1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
// Copyright (C) 2018 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Original Source : https://octave.sourceforge.io/signal/
// Modifieded by:Sonu Sharma, RGIT Mumbai
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [a, b, c, d] = butter (n, w, varargin)
//Butterworth filter design.
//Calling Sequence
//[b, a] = butter (n, wc)
//[b, a] = butter (n, wc, "high")
//[b, a] = butter (n, [wl, wh])
//[b, a] = butter (n, [wl, wh], "stop")
//[z, p, g] = butter (…)
//[…] = butter (…, "s")
//Parameters
//n: positive integer value (order of filter)
//wc: positive real value,
// 1).Normalised digital 3dB cutoff frequency/frequencies for digital filter, in the range [0, 1] {dimensionless}
// 2).Analog 3dB cutoff frequency/frequencies for analog filter, in the range [0, Inf] {rad/sec}
//Description
//This function generates a Butterworth filter. Default is a discrete space (z) or digital filter using Bilinear transformation from s to z plane.
//If second argument is scalar the third parameter takes in low or high, default value is low. The cutoff is pi*wc radians.
//[b,a] = butter(n, [wl, wh]) indicates a band pass filter with cutoffs pi*Wl and pi*wh radians.
//[b,a] = butter(n, [wl, wh], ’stop’) indicates a band reject filter with cutoffs pi*wl and pi*wh radians.
//[z,p,g] = butter(...) returns filter as zero-pole-gain rather than coefficients of the numerator and denominator polynomials.
//[...] = butter(...,’s’) returns a Laplace space filter,here cutoff(s) wc can be larger than 1 (rad/sec).
//Examples
//[b a] = butter(4,0.3,"high")
//Output
// a =
//
//
// column 1 to 4
//
// 1. - 1.5703989 1.2756133 - 0.4844034
//
// column 5
//
// 0.0761971
// b =
//
//
// column 1 to 4
//
// 0.2754133 - 1.1016532 1.6524797 - 1.1016532
//
// column 5
//
// 0.2754133
funcprot();
[nargout nargin] = argn();
if (nargin > 4 | nargin < 2 | nargout > 4 | nargout < 2)
error("butter: Invalid number of input argument")
end
// interpret the input parameters
if (~ (isscalar (n) & (n == fix (n)) & (n > 0)))
error ("butter: filter order N must be a positive integer");
end
stop = %F;
digital = %T;
for i = 1:length (varargin)
select (varargin(i))
case "s"
digital = %F;
case "z"
digital = %T;
case "high"
stop = %T;
case "stop"
stop = %T;
case "low"
stop = %T;
case "pass"
stop = %F;
else
error ("butter: expected [high|stop] or [s|z]");
end
end
[rows_w columns_w] = size(w);
if (~ ((length (w) <= 2) & (rows_w == 1 | columns_w == 1)))
error ("butter: frequency must be given as WC or [WL, WH]");
elseif ((length (w) == 2) & (w(2) <= w(1)))
error ("butter: W(1) must be less than W(2)");
end
if (digital & ~ and ((w >= 0) & (w <= 1)))
error ("butter: all elements of W must be in the range [0,1] for digital filter");
elseif (~ digital & ~ and (w >= 0))
error ("butter: all elements of W must be in the range [0,inf] for analog filter");
end
// Prewarp to the band edges to s plane
if (digital)
T = 2; // sampling frequency of 2 Hz
w = 2 / T * tan (%pi * w / T);
end
// Generate splane poles for the prototype Butterworth filter
// source: Kuc
C = 1; // default cutoff frequency
pole = C * exp (1*%i * %pi * (2 * [1:n] + n - 1) / (2 * n));
if (pmodulo (n, 2) == 1)
pole((n + 1) / 2) = -1; // pure real value at exp(%i*%pi)
end
zero = [];
gain = C^n;
// splane frequency transform
[zero, pole, gain] = sftrans (zero, pole, gain, w, stop);
// Use bilinear transform to convert poles to the z plane
if (digital)
[zero, pole, gain] = bilinear (zero, pole, gain, T);
end
// convert to the correct output form
if (nargout == 2)
// a = real (gain * poly (zero));
// b = real (poly (pole));
[a b] = zp2tf(zero, pole, gain);
elseif (nargout == 3)
a = zero;
b = pole;
c = gain;
else
// output ss results
//[a, b, c, d] = zp2ss (zero, pole, gain);
error("butter: yet not implemented in state-space form OR invalid number of o/p arguments")
end
endfunction
|