summaryrefslogtreecommitdiff
path: root/help/en_US/sftrans.xml
blob: 56aee483ce249a4c85502dae9d0236466b4c787e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from sftrans.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="sftrans" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>sftrans</refname>
    <refpurpose>Transform band edges of a generic lowpass filter (cutoff at W=1) represented in splane zero-pole-gain form.</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   [Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop)
   [Sz, Sp] = sftrans (Sz, Sp, Sg, W, stop)
   [Sz] = sftrans (Sz, Sp, Sg, W, stop)
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>Sz:</term>
      <listitem><para> Zeros.</para></listitem></varlistentry>
   <varlistentry><term>Sp:</term>
      <listitem><para> Poles.</para></listitem></varlistentry>
   <varlistentry><term>Sg:</term>
      <listitem><para> Gain.</para></listitem></varlistentry>
   <varlistentry><term>W:</term>
      <listitem><para> Edge of target filter.</para></listitem></varlistentry>
   <varlistentry><term>stop:</term>
      <listitem><para> True for high pass and band stop filters or false for low pass and band pass filters.</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
This is an Octave function.
Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros
individually. The following table summarizes the transformation:
   </para>
   <para>
Transform         Zero at x                  Pole at x
----------------  -------------------------  ------------------------
Low Pass          zero: Fc x/C               pole: Fc x/C
S -&gt; C S/Fc       gain: C/Fc                 gain: Fc/C
----------------  -------------------------  ------------------------
High Pass         zero: Fc C/x               pole: Fc C/x
S -&gt; C Fc/S       pole: 0                    zero: 0
gain: -x                   gain: -1/x
----------------  -------------------------  ------------------------
Band Pass         zero: b +- sqrt(b^2-FhFl)  pole: b +- sqrt(b^2-FhFl)
S^2+FhFl   pole: 0                    zero: 0
S -&gt; C --------   gain: C/(Fh-Fl)            gain: (Fh-Fl)/C
S(Fh-Fl)   b=x/C (Fh-Fl)/2            b=x/C (Fh-Fl)/2
----------------  -------------------------  ------------------------
Band Stop         zero: b +- sqrt(b^2-FhFl)  pole: b +- sqrt(b^2-FhFl)
S(Fh-Fl)   pole: +-sqrt(-FhFl)        zero: +-sqrt(-FhFl)
S -&gt; C --------   gain: -x                   gain: -1/x
S^2+FhFl   b=C/x (Fh-Fl)/2            b=C/x (Fh-Fl)/2
----------------  -------------------------  ------------------------
Bilinear          zero: (2+xT)/(2-xT)        pole: (2+xT)/(2-xT)
2 z-1        pole: -1                   zero: -1
S -&gt; - ---        gain: (2-xT)/T             gain: (2-xT)/T
T z+1
----------------  -------------------------  ------------------------
   </para>
   <para>
where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious
algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form:
   </para>
   <para>
H(S)=g prod(S-Xi)/prod(S-Xj)
</para>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
[Sz, Sp, Sg] = sftrans (5, 10, 15, 20, 30)
Sz =  4
Sp =  2
Sg =  7.5000
   ]]></programlisting>
</refsection>
</refentry>