1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>sftrans</title>
<style type="text/css" media="all">
@import url("scilab_code.css");
@import url("xml_code.css");
@import url("c_code.css");
@import url("style.css");
</style>
</head>
<body>
<div class="manualnavbar">
<table width="100%"><tr>
<td width="30%">
<span class="previous"><a href="seqperiod.html"><< seqperiod</a></span>
</td>
<td width="40%" class="center">
<span class="top"><a href="section_e54aa8aac34aa55341e8b4b782fe1a74.html">FOSSEE Signal Processing Toolbox</a></span>
</td>
<td width="30%" class="next">
<span class="next"><a href="sgolay.html">sgolay >></a></span>
</td>
</tr></table>
<hr />
</div>
<span class="path"><a href="index.html">FOSSEE Signal Processing Toolbox</a> >> <a href="section_e54aa8aac34aa55341e8b4b782fe1a74.html">FOSSEE Signal Processing Toolbox</a> > sftrans</span>
<br /><br />
<div class="refnamediv"><h1 class="refname">sftrans</h1>
<p class="refpurpose">Transform band edges of a generic lowpass filter (cutoff at W=1) represented in splane zero-pole-gain form.</p></div>
<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
<div class="synopsis"><pre><span class="default">[</span><span class="default">Sz</span><span class="default">, </span><span class="default">Sp</span><span class="default">, </span><span class="default">Sg</span><span class="default">] = </span><span class="functionid">sftrans</span><span class="default"> (</span><span class="default">Sz</span><span class="default">, </span><span class="default">Sp</span><span class="default">, </span><span class="default">Sg</span><span class="default">, </span><span class="default">W</span><span class="default">, </span><span class="default">stop</span><span class="default">)</span>
<span class="default">[</span><span class="default">Sz</span><span class="default">, </span><span class="default">Sp</span><span class="default">] = </span><span class="functionid">sftrans</span><span class="default"> (</span><span class="default">Sz</span><span class="default">, </span><span class="default">Sp</span><span class="default">, </span><span class="default">Sg</span><span class="default">, </span><span class="default">W</span><span class="default">, </span><span class="default">stop</span><span class="default">)</span>
<span class="default">[</span><span class="default">Sz</span><span class="default">] = </span><span class="functionid">sftrans</span><span class="default"> (</span><span class="default">Sz</span><span class="default">, </span><span class="default">Sp</span><span class="default">, </span><span class="default">Sg</span><span class="default">, </span><span class="default">W</span><span class="default">, </span><span class="default">stop</span><span class="default">)</span></pre></div></div>
<div class="refsection"><h3 class="title">Parameters</h3>
<dl><dt><span class="term">Sz:</span>
<dd><p class="para">Zeros.</p></dd></dt>
<dt><span class="term">Sp:</span>
<dd><p class="para">Poles.</p></dd></dt>
<dt><span class="term">Sg:</span>
<dd><p class="para">Gain.</p></dd></dt>
<dt><span class="term">W:</span>
<dd><p class="para">Edge of target filter.</p></dd></dt>
<dt><span class="term">stop:</span>
<dd><p class="para">True for high pass and band stop filters or false for low pass and band pass filters.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">This is an Octave function.
Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros
individually. The following table summarizes the transformation:</p>
<p class="para">Transform Zero at x Pole at x
---------------- ------------------------- ------------------------
Low Pass zero: Fc x/C pole: Fc x/C
S -> C S/Fc gain: C/Fc gain: Fc/C
---------------- ------------------------- ------------------------
High Pass zero: Fc C/x pole: Fc C/x
S -> C Fc/S pole: 0 zero: 0
gain: -x gain: -1/x
---------------- ------------------------- ------------------------
Band Pass zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl)
S^2+FhFl pole: 0 zero: 0
S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
---------------- ------------------------- ------------------------
Band Stop zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl)
S(Fh-Fl) pole: +-sqrt(-FhFl) zero: +-sqrt(-FhFl)
S -> C -------- gain: -x gain: -1/x
S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
---------------- ------------------------- ------------------------
Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT)
2 z-1 pole: -1 zero: -1
S -> - --- gain: (2-xT)/T gain: (2-xT)/T
T z+1
---------------- ------------------------- ------------------------</p>
<p class="para">where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious
algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form:</p>
<p class="para">H(S)=g prod(S-Xi)/prod(S-Xj)</p></div>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabopenclose">[</span><span class="scilabid">Sz</span><span class="scilabdefault">,</span> <span class="scilabid">Sp</span><span class="scilabdefault">,</span> <span class="scilabid">Sg</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">sftrans</span> <span class="scilabopenclose">(</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span> <span class="scilabnumber">10</span><span class="scilabdefault">,</span> <span class="scilabnumber">15</span><span class="scilabdefault">,</span> <span class="scilabnumber">20</span><span class="scilabdefault">,</span> <span class="scilabnumber">30</span><span class="scilabopenclose">)</span>
<span class="scilabid">Sz</span> <span class="scilaboperator">=</span> <span class="scilabnumber">4</span>
<span class="scilabid">Sp</span> <span class="scilaboperator">=</span> <span class="scilabnumber">2</span>
<span class="scilabid">Sg</span> <span class="scilaboperator">=</span> <span class="scilabnumber">7.5000</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<br />
<div class="manualnavbar">
<table width="100%">
<tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
<td width="30%">
<span class="previous"><a href="seqperiod.html"><< seqperiod</a></span>
</td>
<td width="40%" class="center">
<span class="top"><a href="section_e54aa8aac34aa55341e8b4b782fe1a74.html">FOSSEE Signal Processing Toolbox</a></span>
</td>
<td width="30%" class="next">
<span class="next"><a href="sgolay.html">sgolay >></a></span>
</td>
</tr></table>
<hr />
</div>
</body>
</html>
|