blob: 3c4983fdaac198da2fe974c32e72f0472b8bb5f8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>goertzel</title>
<style type="text/css" media="all">
@import url("scilab_code.css");
@import url("xml_code.css");
@import url("c_code.css");
@import url("style.css");
</style>
</head>
<body>
<div class="manualnavbar">
<table width="100%"><tr>
<td width="30%">
<span class="previous"><a href="gmonopuls.html"><< gmonopuls</a></span>
</td>
<td width="40%" class="center">
<span class="top"><a href="section_cc2bc01c47967d47fcf3507a91d572ba.html">FOSSEE Signal Processing Toolbox</a></span>
</td>
<td width="30%" class="next">
<span class="next"><a href="grpdelay.html">grpdelay >></a></span>
</td>
</tr></table>
<hr />
</div>
<span class="path"><a href="index.html">FOSSEE Signal Processing Toolbox</a> >> <a href="section_cc2bc01c47967d47fcf3507a91d572ba.html">FOSSEE Signal Processing Toolbox</a> > goertzel</span>
<br /><br />
<div class="refnamediv"><h1 class="refname">goertzel</h1>
<p class="refpurpose">Computes DFT using the second order Goertzel Algorithm</p></div>
<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
<div class="synopsis"><pre><span class="default">Y</span><span class="default"> = </span><span class="functionid">goertzel</span><span class="default">(</span><span class="default">X</span><span class="default">,</span><span class="default">INDVEC</span><span class="default">,</span><span class="default">DIM</span><span class="default">)</span></pre></div></div>
<div class="refsection"><h3 class="title">Parameters</h3>
<dl></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">goertzel(X,INDVEC)
Computes the DFT of X at indices INDVEC using the second order algorithm along
the first non-singleton dimension. Elements of INDVEC must be positive integers
less than the length of the first non-singleton dimension. If INDVEC is empty
the DFT is computed at all indices along the first non-singleton dimension
goertzel(X,INDVEC,DIM)
Implements the algorithm along dimension DIM
In general goertzel is slower than fft when computing the DFT for all indices
along a particular dimension. However it is computationally more efficient when
the DFT at only a subset of indices is desired
Example
x=rand(1,5)
x =</p>
<p class="para">0.6283918 0.8497452 0.6857310 0.8782165 0.0683740
y=goertzel(x,2);
y =</p>
<p class="para">- 0.3531539 - 0.6299881i
Author
Ankur Mallick
References
Goertzel, G. (January 1958), "An Algorithm for the Evaluation of Finite Trigonometric Series", American Mathematical Monthly 65 (1): 34–35, doi:10.2307/2310304</p></div>
<br />
<div class="manualnavbar">
<table width="100%">
<tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
<td width="30%">
<span class="previous"><a href="gmonopuls.html"><< gmonopuls</a></span>
</td>
<td width="40%" class="center">
<span class="top"><a href="section_cc2bc01c47967d47fcf3507a91d572ba.html">FOSSEE Signal Processing Toolbox</a></span>
</td>
<td width="30%" class="next">
<span class="next"><a href="grpdelay.html">grpdelay >></a></span>
</td>
</tr></table>
<hr />
</div>
</body>
</html>
|