1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from rlevinson.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="rlevinson" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>rlevinson</refname>
<refpurpose>This function computes the autocorrelation coefficients using prediction polynomial method.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
R = rlevinson(a, efinal)
[R, U] = rlevinson(a, efinal)
[R, U, kr] = rlevinson(a, efinal)
[R, U, kr, e] = rlevinson(a, efinal)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>a:</term>
<listitem><para>Input argument ,prediction polynomial coefficients.</para></listitem></varlistentry>
<varlistentry><term>efinal:</term>
<listitem><para>Input argument, final prediction error.</para></listitem></varlistentry>
<varlistentry><term>R:</term>
<listitem><para>Returns the auto-correlation coefficients.</para></listitem></varlistentry>
<varlistentry><term>U:</term>
<listitem><para>Returns upper triangular matrix of order length(a)*length(a).</para></listitem></varlistentry>
<varlistentry><term>kr:</term>
<listitem><para>Reflection coefficients.</para></listitem></varlistentry>
<varlistentry><term>e:</term>
<listitem><para>Prediction error.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description
</title>
<para>The reverse Levinson-Durbin recursion implements the step-down algorithm for solving the following symmetric Toeplitz system of linear equations for r, where r = [r(1) … r(p + 1)] and r(i)* denotes the complex conjugate of r(i).</para>
<para>
<latex>
\begin{eqnarray}
\begin{bmatrix}
r(1) r(2)* - - r(p)* \\
r(2) r(1) - - r(p-1)* \\
- - - - - \\
- - - - - \\
- - - - - \\
r(p) r(p-1) - r(2) r(1)
\end{bmatrix}\begin{bmatrix}
a(2)\\
a(3)\\
.\\
.\\
.\\
a(p+1)
\end{bmatrix}=\begin{bmatrix}
-r(2)\\
-r(3)\\
.\\
.\\
.\\
-r(p+1)
\end{bmatrix}
\end{eqnarray}
</latex>
</para>
<para>
Input vector a represents the polynomial coefficients of this prediction error filter in descending powers of z.
<para>
<latex>
\begin{eqnarray}
A(z)=1+a(2)^{z-1}+.............+a(n+1)^{z-p}
\end{eqnarray}
</latex></para>
</para>
<para>[r,u] = rlevinson(a,efinal) returns upper triangular matrix U from the UDU* decomposition
</para>
<latex>
\begin{eqnarray}
R^{-1}=UE^{-1}U*
\end{eqnarray}
</latex>
<para>
<latex>
</latex>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
X=[1 6/7 5/7 8/7 3/7 6/7];
[R U kr e] = rlevinson(X, 0.3)
]]></programlisting>
</refsection>
<refsection>
<title>See also</title>
<simplelist type="inline">
<member><link linkend="levinson">abs</link></member>
<member><link linkend="levdown">mean</link></member>
</simplelist>
</refsection>
</refentry>
|