summaryrefslogtreecommitdiff
path: root/help/en_US/invfreqz.xml
blob: 188595a9c48f34aaa59e28f75662703aeb4d4a07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from invfreqz.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="invfreqz" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>invfreqz</refname>
    <refpurpose>Fit filter B(z)/A(z)to the complex frequency response H at frequency points F.  A and B are real polynomial coefficients of order nA and nB.</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   [B,A,C] = invfreqz(H,F,nB,nA,W,iter,tol,trace)
   [B,A,C] = invfreqz(H,F,nB,nA,W)
   [B,A,C] = invfreqz(H,F,nB,nA)
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>H:</term>
      <listitem><para> desired complex frequency response.</para></listitem></varlistentry>
   <varlistentry><term>F:</term>
      <listitem><para> frequency (must be same length as H).</para></listitem></varlistentry>
   <varlistentry><term>nB:</term>
      <listitem><para> order of the numerator polynomial B.</para></listitem></varlistentry>
   <varlistentry><term>nA:</term>
      <listitem><para> order of the denominator polynomial A.</para></listitem></varlistentry>
   <varlistentry><term>W:</term>
      <listitem><para> vector of weights (must be same length as F).</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
This is an Octave function.
Fit filter B(z)/A(z)to the complex frequency response H at frequency points F.  A and B are real polynomial coefficients of order nA and nB.
Optionally, the fit-errors can be weighted vs frequency according to the weights W.
Note: all the guts are in invfreq.m
</para>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
[B,A] = butter(4,1/4);
[H,F] = freqz(B,A);
[Bh,Ah,C] = invfreq(H,F,4,4)
Bh =

0.010209   0.040838   0.061257   0.040838   0.010209

Ah =

1.00000  -1.96843   1.73586  -0.72447   0.12039

C =   -7.7065e-15
   ]]></programlisting>
</refsection>
</refentry>