summaryrefslogtreecommitdiff
path: root/help/en_US/goertzel.xml
blob: 95772a363f5f88dc4948be8f5e1749a668620127 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from goertzel.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="goertzel" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>goertzel</refname>
    <refpurpose>Computes DFT using the second order Goertzel Algorithm</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   Y = goertzel(X,INDVEC,DIM)
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
goertzel(X,INDVEC)
Computes the DFT of X at indices INDVEC using the second order algorithm along
the first non-singleton dimension. Elements of INDVEC must be positive integers
less than the length of the first non-singleton dimension. If INDVEC is empty
the DFT is computed at all indices along the first non-singleton dimension
goertzel(X,INDVEC,DIM)
Implements the algorithm along dimension DIM
In general goertzel is slower than fft when computing the DFT for all indices
along a particular dimension. However it is computationally more efficient when
the DFT at only a subset of indices is desired
Example
x=rand(1,5)
x  =
   </para>
   <para>
0.6283918    0.8497452    0.6857310    0.8782165    0.0683740
y=goertzel(x,2);
y  =
   </para>
   <para>
- 0.3531539 - 0.6299881i
Author
Ankur Mallick
References
Goertzel, G. (January 1958), "An Algorithm for the Evaluation of Finite Trigonometric Series", American Mathematical Monthly 65 (1): 34–35, doi:10.2307/2310304
</para>
</refsection>
</refentry>