blob: 95772a363f5f88dc4948be8f5e1749a668620127 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from goertzel.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="goertzel" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>goertzel</refname>
<refpurpose>Computes DFT using the second order Goertzel Algorithm</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
Y = goertzel(X,INDVEC,DIM)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
goertzel(X,INDVEC)
Computes the DFT of X at indices INDVEC using the second order algorithm along
the first non-singleton dimension. Elements of INDVEC must be positive integers
less than the length of the first non-singleton dimension. If INDVEC is empty
the DFT is computed at all indices along the first non-singleton dimension
goertzel(X,INDVEC,DIM)
Implements the algorithm along dimension DIM
In general goertzel is slower than fft when computing the DFT for all indices
along a particular dimension. However it is computationally more efficient when
the DFT at only a subset of indices is desired
Example
x=rand(1,5)
x =
</para>
<para>
0.6283918 0.8497452 0.6857310 0.8782165 0.0683740
y=goertzel(x,2);
y =
</para>
<para>
- 0.3531539 - 0.6299881i
Author
Ankur Mallick
References
Goertzel, G. (January 1958), "An Algorithm for the Evaluation of Finite Trigonometric Series", American Mathematical Monthly 65 (1): 34–35, doi:10.2307/2310304
</para>
</refsection>
</refentry>
|