blob: 8748aec4a15a610d74889d12a59ef4d76e69f80e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from fftconv.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="fftconv" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>fftconv</refname>
<refpurpose>Convolve two vectors using the FFT for computation.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
Y = fftconv(X, Y)
Y = fftconv(X, Y, N)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>X, Y:</term>
<listitem><para> Vectors</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Convolve two vectors using the FFT for computation. 'c' = fftconv (X, Y)' returns a vector of length equal to 'length(X) + length (Y) - 1'. If X and Y are the coefficient vectors of two polynomials, the returned value is the coefficient vector of the product polynomial.
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
fftconv([1,2,3], [3,4,5])
ans =
3. 10. 22. 22. 15.
]]></programlisting>
</refsection>
</refentry>
|