blob: ed6ecf75d750e944eecb647950585f95a1ae2a43 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from dftmtx.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="dftmtx" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>dftmtx</refname>
<refpurpose></refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
[d]=dftmtx(n)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>n:</term>
<listitem><para> Real positive scalar number</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
This is an Octave function
This fuction gives a complex matrix of values whose product with a vector produces the discrete Fourier transform. This can also be achieved by directly using the fft function i.e. y=fft(x) is same as y=A*x where A=dftmtx(n).
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
1. dftmtx(3)
ans = 1.00000 + 0.00000i 1.00000 + 0.00000i 1.00000 + 0.00000i
1.00000 + 0.00000i -0.50000 - 0.86603i -0.50000 + 0.86603i
1.00000 - 0.00000i -0.50000 + 0.86603i -0.50000 - 0.86603i
]]></programlisting>
</refsection>
</refentry>
|