summaryrefslogtreecommitdiff
path: root/help/en_US/arch_fit.xml
blob: b984137ad11eebbe8f6896af10fa7de6da4485b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from arch_fit.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="arch_fit" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>arch_fit</refname>
    <refpurpose>This functions fits an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   [A, B] = arch_fit (Y, X, P, ITER, GAMMA, A0, B0)
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.
   </para>
   <para>
The model is
   </para>
   <para>
y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2
   </para>
   <para>
in which e(t) is N(0, h(t)), given a time-series vector Y up to time t-1 and a matrix of (ordinary) regressors X up to t. The order of the regression of the residual variance is specified by P.
   </para>
   <para>
If invoked as 'arch_fit (Y, K, P)' with a positive integer K, fit an ARCH(K, P) process, i.e., do the above with the t-th row of X given by
   </para>
   <para>
[1, y(t-1), ..., y(t-k)]
   </para>
   <para>
Optionally, one can specify the number of iterations ITER, the updating factor GAMMA, and initial values a0 and b0 for the scoring algorithm.
</para>
</refsection>
</refentry>