summaryrefslogtreecommitdiff
path: root/help/en_US/arburg.xml
blob: 775d9c1326bb0d1babdcde409565731271e9431f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from arburg.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="arburg" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>arburg</refname>
    <refpurpose>This function calculates coefficients of an autoregressive (AR) model of complex data.</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   a = arburg(x, poles)
   a = arburg(x, poles, criterion)
   [a, v] = arburg(...)
   [a, v, k] = arburg(...)
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>x:</term>
      <listitem><para> vector of real or complex numbers, of length &gt; 2</para></listitem></varlistentry>
   <varlistentry><term>poles:</term>
      <listitem><para> positive integer value &lt; length(x) - 2</para></listitem></varlistentry>
   <varlistentry><term>criterion:</term>
      <listitem><para> string value, takes in "AKICc", "KIC", "AICc", "AIC" and "FPE", default it not using a model-selection criterion</para></listitem></varlistentry>
   <varlistentry><term>a:</term>
      <listitem><para> list of autoregression coefficients.</para></listitem></varlistentry>
   <varlistentry><term>v:</term>
      <listitem><para> mean square of residual noise from the whitening operation of the Burg lattice filter</para></listitem></varlistentry>
   <varlistentry><term>k:</term>
      <listitem><para> reflection coefficients defining the lattice-filter embodiment of the model</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
This function calculates coefficients of an autoregressive (AR) model of complex data x using the whitening lattice-filter method of Burg.
   </para>
   <para>
The first argument is the data sampled. The second argument is the number of poles in the model (or limit in case a criterion is supplied).
The third parameter takes in the criterion to limit the number of poles. The acceptable values are "AIC", "AKICc", "KIC", "AICc" which are based on information theory.
</para>
</refsection>

<refsection>
   <title>Examples</title>
   <programlisting role="example"><![CDATA[
x = [1,2,3,4,5] ;
poles = 2 ;
arburg(x,poles)
   ]]></programlisting>
</refsection>
</refentry>