summaryrefslogtreecommitdiff
path: root/help/en_US/ac2poly.xml
blob: e90759d9c255c5b1219d880b72ae50758d767110 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
<?xml version="1.0" encoding="UTF-8"?>

<!--
 *
 * This help file was generated from ac2poly.sci using help_from_sci().
 *
 -->

<refentry version="5.0-subset Scilab" xml:id="ac2poly" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns3="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:scilab="http://www.scilab.org"
          xmlns:db="http://docbook.org/ns/docbook">

  <refnamediv>
    <refname>ac2poly</refname>
    <refpurpose>Convert autocorrelation sequence to polynomial of prediction filter</refpurpose>
  </refnamediv>


<refsynopsisdiv>
   <title>Calling Sequence</title>
   <synopsis>
   a = ac2poly(r)
   [a,e] = ac2poly(r)
   
   </synopsis>
</refsynopsisdiv>

<refsection>
   <title>Parameters</title>
   <variablelist>
   <varlistentry><term>r:</term>
      <listitem><para> Autocorrelation sequence to be represented with an FIR linear prediction filter</para></listitem></varlistentry>
   <varlistentry><term>a:</term>
      <listitem><para> Output polynomial representing the linear prediction filter e/(a(1) + a(2)z + a(3)z^2 .. a(N)z^N-1)</para></listitem></varlistentry>
   <varlistentry><term>e:</term>
      <listitem><para> Output scaling for the lienar prediction filter</para></listitem></varlistentry>
   </variablelist>
</refsection>

<refsection>
   <title>Description</title>
   <para>
Function ac2poly() finds the best fit polynomial for FIR linear prediction filter a, corresponding to the autocorrelation sequence r. a is the same length as r, and is normalized with the first element. So a(1) = 1.
   </para>
   <para>
Author
Parthe Pandit
   </para>
   <para>
</para>
</refsection>

<refsection>
   <title>Bibliography</title>
   <para>Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.</para>
</refsection>
</refentry>