diff options
Diffstat (limited to 'macros/bilinear.sci')
-rw-r--r-- | macros/bilinear.sci | 6 |
1 files changed, 1 insertions, 5 deletions
diff --git a/macros/bilinear.sci b/macros/bilinear.sci index 1aa408a..2edab0d 100644 --- a/macros/bilinear.sci +++ b/macros/bilinear.sci @@ -10,14 +10,11 @@ // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) - //Transforms a s-plane filter (Analog) into a z-plane filter (Digital) using Bilinear transformation - //Calling Sequence // [Zb, Za] = bilinear(Sb, Sa, T) // [Zb, Zb] = bilinear(Sz, Sp, Sg, T) // [Zz, Zp, Zg] = bilinear(...) - //Prameters //Sb: Numerator coefficient vector in s-domain //Sa: denumerator coefficient vector s-domain @@ -30,14 +27,12 @@ function [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) //Zz: zeros in z-plane //Zp: poles in z-plane //Zg: gain in z-domain - //Description: //a filter design can be transformed from the s-plane to the z-plane while maintaining the band edges by means of the bilinear transform. This maps the left hand side of the s-plane into the interior of the unit circle in z-plane. The mapping is highly non-linear, so you must design your filter with band edges in the s-plane positioned at 2/T tan(w*T/2) so that they will be positioned at w after the bilinear transform is complete. //It does following transformation from s-plane to z-plane // 2 z-1 // s -> - ---- // T z+1 - //Examples //[b a] = bilinear ([1 2 3], [4 5 6], 1, 1) //Output : @@ -49,6 +44,7 @@ function [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) // 0. - 0.1666667 - 0.3333333 2.5 // Dependencies // tf2zp postpad zp2tf prepad + funcprot(0); [nargout nargin] = argn(); ieee(2); |