summaryrefslogtreecommitdiff
path: root/help/en_US/sftrans.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/sftrans.xml')
-rw-r--r--help/en_US/sftrans.xml66
1 files changed, 23 insertions, 43 deletions
diff --git a/help/en_US/sftrans.xml b/help/en_US/sftrans.xml
index 56aee48..3a2e0c5 100644
--- a/help/en_US/sftrans.xml
+++ b/help/en_US/sftrans.xml
@@ -17,7 +17,7 @@
<refnamediv>
<refname>sftrans</refname>
- <refpurpose>Transform band edges of a generic lowpass filter (cutoff at W=1) represented in splane zero-pole-gain form.</refpurpose>
+ <refpurpose>Transform band edges of a prototype filter (cutoff at W=1) represented in s-plane zero-pole-gain form (Frequency Transformation in Analog domain).</refpurpose>
</refnamediv>
@@ -42,59 +42,39 @@
<varlistentry><term>W:</term>
<listitem><para> Edge of target filter.</para></listitem></varlistentry>
<varlistentry><term>stop:</term>
- <listitem><para> True for high pass and band stop filters or false for low pass and band pass filters.</para></listitem></varlistentry>
+ <listitem><para> True(%T or 1) for high pass and band stop filters or false (%F or 0) for low pass and band pass filters.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
-This is an Octave function.
-Theory: Given a low pass filter represented by poles and zeros in the splane, you can convert it to a low pass, high pass, band pass or band stop by transforming each of the poles and zeros
-individually. The following table summarizes the transformation:
- </para>
- <para>
-Transform Zero at x Pole at x
----------------- ------------------------- ------------------------
-Low Pass zero: Fc x/C pole: Fc x/C
-S -&gt; C S/Fc gain: C/Fc gain: Fc/C
----------------- ------------------------- ------------------------
-High Pass zero: Fc C/x pole: Fc C/x
-S -&gt; C Fc/S pole: 0 zero: 0
-gain: -x gain: -1/x
----------------- ------------------------- ------------------------
-Band Pass zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl)
-S^2+FhFl pole: 0 zero: 0
-S -&gt; C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
-S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
----------------- ------------------------- ------------------------
-Band Stop zero: b +- sqrt(b^2-FhFl) pole: b +- sqrt(b^2-FhFl)
-S(Fh-Fl) pole: +-sqrt(-FhFl) zero: +-sqrt(-FhFl)
-S -&gt; C -------- gain: -x gain: -1/x
-S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
----------------- ------------------------- ------------------------
-Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT)
-2 z-1 pole: -1 zero: -1
-S -&gt; - --- gain: (2-xT)/T gain: (2-xT)/T
-T z+1
----------------- ------------------------- ------------------------
- </para>
- <para>
-where C is the cutoff frequency of the initial lowpass filter, Fc is the edge of the target low/high pass filter and [Fl,Fh] are the edges of the target band pass/stop filter. With abundant tedious
-algebra, you can derive the above formulae yourself by substituting the transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a pole at x, and converting the result into the form:
- </para>
- <para>
-H(S)=g prod(S-Xi)/prod(S-Xj)
-</para>
+Given a low pass filter represented by poles and zeros in the splane, can be converted into a </para>
+<para> low pass (having diffrent cutoff frequency),</para>
+<para> high pass,</para>
+<para> band pass,</para>
+<para> band stop.</para>
+<para> by transforming each of the poles and zeros individually.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-[Sz, Sp, Sg] = sftrans (5, 10, 15, 20, 30)
-Sz = 4
-Sp = 2
-Sg = 7.5000
+Sz = [1 2 3];
+Sp = [4 5 6];
+Sg = 15;
+W = 20;
+stop = %T;
+[Sz, Sp, Sg] = sftrans (Sz, Sp, Sg, W, stop)
+
]]></programlisting>
</refsection>
+
+<refsection>
+<title>Modified by :</title>
+<simplelist type="vert">
+<member>Sonu Sharma, RGIT Mumbai (fellow at FOSSEE, IIT Bombay)</member>
+ </simplelist>
+</refsection>
+
</refentry>