summaryrefslogtreecommitdiff
path: root/help/en_US/arch_test.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/arch_test.xml')
-rw-r--r--help/en_US/arch_test.xml73
1 files changed, 73 insertions, 0 deletions
diff --git a/help/en_US/arch_test.xml b/help/en_US/arch_test.xml
new file mode 100644
index 0000000..aa57ff0
--- /dev/null
+++ b/help/en_US/arch_test.xml
@@ -0,0 +1,73 @@
+<?xml version="1.0" encoding="UTF-8"?>
+
+<!--
+ *
+ * This help file was generated from arch_test.sci using help_from_sci().
+ *
+ -->
+
+<refentry version="5.0-subset Scilab" xml:id="arch_test" xml:lang="en"
+ xmlns="http://docbook.org/ns/docbook"
+ xmlns:xlink="http://www.w3.org/1999/xlink"
+ xmlns:svg="http://www.w3.org/2000/svg"
+ xmlns:ns3="http://www.w3.org/1999/xhtml"
+ xmlns:mml="http://www.w3.org/1998/Math/MathML"
+ xmlns:scilab="http://www.scilab.org"
+ xmlns:db="http://docbook.org/ns/docbook">
+
+ <refnamediv>
+ <refname>arch_test</refname>
+ <refpurpose>perform a Lagrange Multiplier (LM) test of thenull hypothesis of no conditional heteroscedascity against the alternative of CH(P)</refpurpose>
+ </refnamediv>
+
+
+<refsynopsisdiv>
+ <title>Calling Sequence</title>
+ <synopsis>
+ arch_test(Y,X,P)
+ PVAL = arch_test(Y,X,P)
+ [PVAL, LM]= arch_test(Y,X,P)
+ </synopsis>
+</refsynopsisdiv>
+
+<refsection>
+ <title>Parameters</title>
+ <variablelist>
+ <varlistentry><term>P:</term>
+ <listitem><para> Degrees of freedom</para></listitem></varlistentry>
+ <varlistentry><term>PVAL:</term>
+ <listitem><para>PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test</para></listitem></varlistentry>
+ </variablelist>
+</refsection>
+
+<refsection>
+ <title>Description</title>
+ <para>
+perform a Lagrange Multiplier (LM) test of thenull hypothesis of no conditional heteroscedascity against the alternative of CH(P).
+ </para>
+ <para>
+I.e., the model is
+ </para>
+ <para>
+y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
+ </para>
+ <para>
+given Y up to t-1 and X up to t, e(t) is N(0, h(t)) with
+ </para>
+ <para>
+h(t) = v + a(1) * e(t-1)^2 + ... + a(p) *e(t-p)^2, and the null is a(1) == ... == a(p) == 0.
+ </para>
+ <para>
+If the second argument is a scalar integer, k,perform the sametest in a linear autoregression model of orderk, i.e., with
+ </para>
+ <para>
+[1, y(t-1), ..., y(t-K)] as the t-th row of X.
+ </para>
+ <para>
+Under the null, LM approximatel has a chisquare distribution with P degrees of freedom and PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test.
+ </para>
+ <para>
+If no output argument is given, the p-value is displayed.
+</para>
+</refsection>
+</refentry>