summaryrefslogtreecommitdiff
path: root/help/en_US/arburg.xml
diff options
context:
space:
mode:
Diffstat (limited to 'help/en_US/arburg.xml')
-rw-r--r--help/en_US/arburg.xml50
1 files changed, 1 insertions, 49 deletions
diff --git a/help/en_US/arburg.xml b/help/en_US/arburg.xml
index 775d9c1..4cea095 100644
--- a/help/en_US/arburg.xml
+++ b/help/en_US/arburg.xml
@@ -17,55 +17,7 @@
<refnamediv>
<refname>arburg</refname>
- <refpurpose>This function calculates coefficients of an autoregressive (AR) model of complex data.</refpurpose>
+ <refpurpose></refpurpose>
</refnamediv>
-
-<refsynopsisdiv>
- <title>Calling Sequence</title>
- <synopsis>
- a = arburg(x, poles)
- a = arburg(x, poles, criterion)
- [a, v] = arburg(...)
- [a, v, k] = arburg(...)
- </synopsis>
-</refsynopsisdiv>
-
-<refsection>
- <title>Parameters</title>
- <variablelist>
- <varlistentry><term>x:</term>
- <listitem><para> vector of real or complex numbers, of length &gt; 2</para></listitem></varlistentry>
- <varlistentry><term>poles:</term>
- <listitem><para> positive integer value &lt; length(x) - 2</para></listitem></varlistentry>
- <varlistentry><term>criterion:</term>
- <listitem><para> string value, takes in "AKICc", "KIC", "AICc", "AIC" and "FPE", default it not using a model-selection criterion</para></listitem></varlistentry>
- <varlistentry><term>a:</term>
- <listitem><para> list of autoregression coefficients.</para></listitem></varlistentry>
- <varlistentry><term>v:</term>
- <listitem><para> mean square of residual noise from the whitening operation of the Burg lattice filter</para></listitem></varlistentry>
- <varlistentry><term>k:</term>
- <listitem><para> reflection coefficients defining the lattice-filter embodiment of the model</para></listitem></varlistentry>
- </variablelist>
-</refsection>
-
-<refsection>
- <title>Description</title>
- <para>
-This function calculates coefficients of an autoregressive (AR) model of complex data x using the whitening lattice-filter method of Burg.
- </para>
- <para>
-The first argument is the data sampled. The second argument is the number of poles in the model (or limit in case a criterion is supplied).
-The third parameter takes in the criterion to limit the number of poles. The acceptable values are "AIC", "AKICc", "KIC", "AICc" which are based on information theory.
-</para>
-</refsection>
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
-x = [1,2,3,4,5] ;
-poles = 2 ;
-arburg(x,poles)
- ]]></programlisting>
-</refsection>
</refentry>