summaryrefslogtreecommitdiff
path: root/macros/unwrap2.sci
diff options
context:
space:
mode:
authorRashpat932024-08-09 11:47:44 +0530
committerGitHub2024-08-09 11:47:44 +0530
commitaf6fe82f90dcb2314a3d37a9a1e297fb0fc447f3 (patch)
tree80effebb59b2042de6635493f4831ba215f19eee /macros/unwrap2.sci
parentb10cff2c07747b039e3c3ee83a34d437e958356b (diff)
parent2e21edde1c1a251a60739b15e1c699172401f044 (diff)
downloadFOSSEE-Signal-Processing-Toolbox-master.tar.gz
FOSSEE-Signal-Processing-Toolbox-master.tar.bz2
FOSSEE-Signal-Processing-Toolbox-master.zip
Merge pull request #17 from avinashlalotra/masterHEADmaster
Abinash's Work
Diffstat (limited to 'macros/unwrap2.sci')
-rw-r--r--macros/unwrap2.sci244
1 files changed, 210 insertions, 34 deletions
diff --git a/macros/unwrap2.sci b/macros/unwrap2.sci
index b8ea9de..7844e38 100644
--- a/macros/unwrap2.sci
+++ b/macros/unwrap2.sci
@@ -1,35 +1,211 @@
-function Y = unwrap2 (X, TOL, DIM)
-//Unwrap radian phases by adding or subtracting multiples of 2*pi.
-//Calling Sequence
-//B = unwrap(X)
-//B = unwrap(X, TOL)
-//B = unwrap(X, TOL, DIM)
-//Parameters
-//Description
-//This function unwraps radian phases by adding or subtracting multiples of 2*pi as appropriate to remove jumps greater than TOL.
-//
-// TOL defaults to pi.
-//
-//Unwrap will work along the dimension DIM. If DIM is unspecified it defaults to the first non-singleton dimension.
-//Examples
-//unwrap2([1,2,3])
-//ans =
-// 1. 2. 3.
-funcprot(0);
-lhs = argn(1);
-rhs = argn(2);
-if (rhs < 1 | rhs > 3)
-error("Wrong number of input arguments.");
-end
-
-select(rhs)
-
- case 1 then
- Y = callOctave("unwrap",X);
- case 2 then
- Y = callOctave("unwrap",X,TOL);
- case 3 then
- Y = callOctave("unwrap",X,TOL,DIM);
- end
-
+/*Description:
+ The unwrap function adjusts radian phases in the input array x by adding or subtracting multiples of
+ 2π as necessary to remove phase jumps that exceed the specified tolerance tol. If tol is not provided, it defaults to 𝜋
+ Radian Phases: These are typically angles or phases expressed in radians, commonly encountered in signal processing and communication systems.
+ Tolerance (tol): Determines the maximum allowable discontinuity in the phases.
+ If the difference between consecutive phases exceeds tol, unwrap adjusts the phase by adding or subtracting 2π.
+ Dimension (dim): Specifies the dimension along which the unwrapping operation is applied.
+ By default, unwrap operates along the first non-singleton dimension of the input array x.
+Calling Sequence:
+ b = unwrap(x)
+ b = unwrap(x, tol)
+ b = unwrap(x, tol, dim)
+Parameters:
+ x: Input array containing radian phases to be unwrapped.
+ tol (optional): Tolerance parameter specifying the maximum jump allowed between consecutive phases before adding or subtracting 2π. Defaults to 𝜋
+ dim (optional): Dimension along which to unwrap the phases. If unspecified, dim defaults to the first non-singleton dimension of the array x.
+Dependencies : ipermute*/
+function retval = unwrap2 (x, tol, dim)
+ nargin = argn(2)
+ if (nargin < 1)
+ error("invalid number of inputs");
+ end
+ if (~ (type(x) == [ 1 5 8]) || or(type(x)==[4,6]))
+ error ("unwrap2: X must be numeric");
+ end
+ if (nargin < 2 || isempty (tol))
+ tol = %pi;
+ end
+ // Don't let anyone use a negative value for TOL.
+ tol = abs (tol);
+ nd = ndims (x);
+ sz = size (x);
+ if (nargin == 3)
+ if (~(or(type(dim)==[1 5 8])&& isscalar (dim) && ...
+ dim == fix (dim)) || ~(1 <= dim))
+ error ("unwrap2: DIM must be an integer and a valid dimension");
+ end
+ else
+ // Find the first non-singleton dimension.
+ dim = find (sz > 1, 1)
+ if isempty(dim)
+ dim = 1;
+ end
+ end
+ rng = 2*%pi;
+ // Handle case where we are trying to unwrap a scalar, or only have
+ // one sample in the specified dimension (a given when dim > nd).
+ if ((dim > nd) || ( sz(dim) == 1))
+ retval = x;
+ return;
+ end
+ if (and(abs(x(:))<%inf ) )
+ // Take first order difference so that wraps will show up as large values
+ // and the sign will show direction.
+ if length(sz) < 3
+ sz(3) = 1 ;
+ end
+ sz(dim) = 1;
+ zero_padding = zeros (sz(1),sz(2),sz(3));
+ d = cat (dim, zero_padding, -diff (x, 1, dim));
+ // Find only the peaks and multiply them by the appropriate amount
+ // of ranges so that there are kronecker deltas at each wrap point
+ // multiplied by the appropriate amount of range values.
+ p = round (abs (d)./rng) .* rng .* (double(double(d > tol) > 0) - double(double(d < -tol) > 0));
+ // Integrate this so that the deltas become cumulative steps to shift
+ // the original data.
+ retval = cumsum (p, dim) + x;
+ else
+ // Unwrap needs to skip over NaN, NA, Inf in wrapping calculations.
+ if (isvector (x))
+ // Simlpified path for vector inputs.
+ retval = x;
+ xfin_idx = abs(x)<%inf ;
+ xfin = x(xfin_idx);
+ d = cat (dim, 0, -diff(xfin, 1, dim));
+ p = round (abs (d)./rng) .* rng .* (double(double(d > tol) > 0) - double(double(d < -tol) > 0));
+ retval(xfin_idx) = xfin + cumsum (p, dim);
+ else
+ // For n-dimensional arrays with a possibly unequal number of non-finite
+ // values, mask entries with values that do not impact calcualation.
+ // Locate nonfinite values.
+ nf_idx = ~ abs(x)<%inf;
+ if (and(nf_idx(:)))
+ // Trivial case, all non-finite values
+ retval = x;
+ return;
+ end
+ // Permute all operations to occur along dim 1. Inverse permute at end.
+ permuteflag = dim ~= 1;
+ if (permuteflag)
+ perm_idx = [1 : nd];
+ perm_idx([1, dim]) = [dim, 1];
+ x = permute (x, perm_idx);
+ nf_idx = permute (nf_idx, perm_idx);
+ sz([1, dim]) = sz([dim, 1]);
+ dim = 1;
+ end
+ // Substitute next value in dim direction for nonfinite values(ignoring
+ // any at trailing end) to prevent calculation impact.
+ x_nf = x(nf_idx); // Store nonfinite values.
+ zero_padding = zeros ([1, sz(2:$)]);
+ x = __fill_nonfinite_columnwise__ (x, nf_idx, zero_padding, sz, nd);
+ d = [zero_padding; -diff(x, 1, 1)];
+ p = round (abs (d)./rng) .* rng .* ...
+ (((d > tol) > 0) - ((d < -tol) > 0));
+ retval = x + cumsum (p, 1);
+ // Restore nonfinite values.
+ retval(nf_idx) = x_nf;
+ // Invert permutation.
+ if (permuteflag)
+ retval = ipermute (retval, perm_idx);
+ end
+ end
+ end
endfunction
+function y = repelems(x,r)
+ y = [];
+ for i = 1:size(r,2)
+ y = [y, x(r(1,i)*ones(1, r(2,i)))];
+ end
+endfunction
+function x = __fill_nonfinite_columnwise__ (x, nonfinite_loc, zero_padding, szx, ndx)
+ // Replace non-finite values of x, as indicated by logical index
+ // nonfinite_loc, with next values.
+ flip_idx(1:ndx) = {':'};
+ flip_idx(1) = {szx(1):-1:1};
+ // Isolate nf values by location:
+ nf_front = cumprod (nonfinite_loc, 1);
+ nf_back = cumprod (nonfinite_loc(flip_idx{:}), 1)(flip_idx{:});
+ nf_middle = nonfinite_loc & ~ (nf_back | nf_front);
+ // Process bound/middle elements
+ locs_before = [diff(nf_middle, 1, 1); zero_padding] == 1;
+ locs_after = diff ([zero_padding; nf_middle], 1, 1) == -1;
+ mid_gap_sizes = find (locs_after) - find (locs_before) - 1;
+ x(nf_middle) = repelems (x(locs_after), ...
+ [1 : numel(mid_gap_sizes); mid_gap_sizes'])';
+ // Process front edge elements
+ nf_front = nf_front & ~ and (nonfinite_loc, 1); // Remove all nf columns.
+ locs_after = diff ([zero_padding; nf_front], 1, 1) == -1;
+ front_gap_sizes = (sum (nf_front, 1))(any (nf_front, 1))(:);
+ x(nf_front) = repelems (x(locs_after), ...
+ [1:length(front_gap_sizes); front_gap_sizes'])';
+endfunction
+/*
+//Test cases
+i = 0;
+t = [];
+r = [0:100]; // original vector
+w = r - 2*%pi*floor ((r+%pi)/(2*%pi)); // wrapped into [-pi,pi]
+tol = 1e3*%eps;
+assert_checkalmostequal (r, unwrap2 (w), tol)
+assert_checkalmostequal (r', unwrap2 (w'), tol)
+assert_checkalmostequal ([r',r'], unwrap2 ([w',w']), tol)
+assert_checkalmostequal ([r; r ], unwrap2 ([w; w ], [], 2), tol)
+assert_checkalmostequal(r + 10, unwrap2 (10 + w), tol)
+assert_checkequal (w', unwrap2 (w', [], 2))
+assert_checkequal(w, unwrap2 (w, [], 1))
+assert_checkequal([w; w], unwrap2 ([w; w]))
+// Test that small values of tol have the same effect as tol = pi
+assert_checkalmostequal(r, unwrap2 (w, 0.1), tol)
+assert_checkalmostequal(r, unwrap2 (w, %eps), tol)
+// Test that phase changes larger than 2*pi unwrap properly
+assert_checkalmostequal([0; 1], unwrap2([0; 1]))
+assert_checkalmostequal([0; 4 - 2*%pi], unwrap2 ([0; 4]))
+assert_checkalmostequal([0; 7 - 2*%pi], unwrap2 ([0; 7]))
+assert_checkalmostequal([0; 10 - 4*%pi], unwrap2 ([0; 10]))
+assert_checkalmostequal([0; 13 - 4*%pi], unwrap2 ([0; 13]))
+assert_checkalmostequal([0; 16 - 6*%pi], unwrap2 ([0; 16]))
+assert_checkalmostequal([0; 19 - 6*%pi], unwrap2 ([0; 19]))
+//test
+A = [%pi*(-4), %pi*(-2+1/6), %pi/4, %pi*(2+1/3), %pi*(4+1/2), %pi*(8+2/3), %pi*(16+1), %pi*(32+3/2), %pi*64];
+assert_checkalmostequal (unwrap2 (A), unwrap2 (A, %pi));
+assert_checkalmostequal (unwrap2 (A, %pi), unwrap2 (A, %pi, 2));
+assert_checkalmostequal (unwrap2 (A', %pi), unwrap2 (A', %pi, 1));
+//test
+A = [%pi*(-4); %pi*(2+1/3); %pi*(16+1)];
+B = [%pi*(-2+1/6); %pi*(4+1/2); %pi*(32+3/2)];
+C = [%pi/4; %pi*(8+2/3); %pi*64];
+D = [%pi*(-2+1/6); %pi*(2+1/3); %pi*(8+2/3)];
+E(:, :, 1) = [A, B, C, D];
+E(:, :, 2) = [A+B, B+C, C+D, D+A];
+F(:, :, 1) = [unwrap2(A), unwrap2(B), unwrap2(C), unwrap2(D)];
+F(:, :, 2) = [unwrap2(A+B), unwrap2(B+C), unwrap2(C+D), unwrap2(D+A)];
+assert_checkalmostequal (unwrap2 (E), F);
+// Test trivial return for m = 1 and dim > nd
+assert_checkalmostequal (unwrap2 (ones(4,1), [], 1), ones(4,1))
+assert_checkalmostequal (unwrap2 (ones(4,1), [], 2), ones(4,1))
+assert_checkalmostequal (unwrap2 (ones(4,1), [], 3), ones(4,1))
+assert_checkalmostequal (unwrap2 (ones(4,3,2), [], 99), ones(4,3,2))
+// Test empty input return
+assert_checkalmostequal (unwrap2 ([]), [])
+assert_checkalmostequal (unwrap2 (ones (1,0)), ones (1,0))
+assert_checkalmostequal (unwrap2 (ones (1,0), [], 1), ones (1,0))
+assert_checkalmostequal (unwrap2 (ones (1,0), [], 2), ones (1,0))
+assert_checkalmostequal (unwrap2 (ones (1,0), [], 3), ones (1,0))
+// Test trivial return for m = 1 and dim > nd
+assert_checkalmostequal (unwrap2 (ones(4,1), [], 1), ones(4,1))
+assert_checkalmostequal (unwrap2 (ones(4,1), [], 2), ones(4,1))
+assert_checkalmostequal (unwrap2 (ones(4,1), [], 3), ones(4,1))
+assert_checkalmostequal (unwrap2 (ones(4,3,2), [], 99), ones(4,3,2))
+// Test empty input return
+assert_checkalmostequal (unwrap2 ([]), [])
+assert_checkalmostequal (unwrap2 (ones (1,0)), ones (1,0))
+assert_checkalmostequal (unwrap2 (ones (1,0), [], 1), ones (1,0))
+assert_checkalmostequal (unwrap2 (ones (1,0), [], 2), ones (1,0))
+assert_checkalmostequal (unwrap2 (ones (1,0), [], 3), ones (1,0))
+// Test handling of non-finite values
+x = %pi * [-%inf, 0.5, -1, %nan, %inf, -0.5, 1];
+assert_checkalmostequal (unwrap2 (x), %pi * [-%inf, 0.5, 1, %nan, %inf, 1.5, 1], %eps)
+assert_checkalmostequal (unwrap2 (x.'), %pi * [-%inf, 0.5, 1, %nan, %inf, 1.5, 1].', %eps)
+*/ \ No newline at end of file