summaryrefslogtreecommitdiff
path: root/macros/grpdelay.sci
diff options
context:
space:
mode:
authorRashpat932024-08-09 11:47:44 +0530
committerGitHub2024-08-09 11:47:44 +0530
commitaf6fe82f90dcb2314a3d37a9a1e297fb0fc447f3 (patch)
tree80effebb59b2042de6635493f4831ba215f19eee /macros/grpdelay.sci
parentb10cff2c07747b039e3c3ee83a34d437e958356b (diff)
parent2e21edde1c1a251a60739b15e1c699172401f044 (diff)
downloadFOSSEE-Signal-Processing-Toolbox-af6fe82f90dcb2314a3d37a9a1e297fb0fc447f3.tar.gz
FOSSEE-Signal-Processing-Toolbox-af6fe82f90dcb2314a3d37a9a1e297fb0fc447f3.tar.bz2
FOSSEE-Signal-Processing-Toolbox-af6fe82f90dcb2314a3d37a9a1e297fb0fc447f3.zip
Merge pull request #17 from avinashlalotra/masterHEADmaster
Abinash's Work
Diffstat (limited to 'macros/grpdelay.sci')
-rw-r--r--macros/grpdelay.sci204
1 files changed, 155 insertions, 49 deletions
diff --git a/macros/grpdelay.sci b/macros/grpdelay.sci
index a7ffdad..dec9823 100644
--- a/macros/grpdelay.sci
+++ b/macros/grpdelay.sci
@@ -1,51 +1,157 @@
-function [gd,w] = grpdelay(b,a,nfft,whole,Fs)
-//This function computes the group delay of a filter.
-//Calling Sequence
-//gd = grpdelay(b)
-//gd = grpdelay(b, a)
-//gd = grpdelay(b, a, nfft)
-//gd = grpdelay(b, a, nfft, whole)
-//gd = grpdelay(b, a, nfft, whole, Fs)
-//[gd, w] = grpdelay(...)
+/*Description:
+ Compute the group delay of a filter.
+ Theory: group delay, g(w) = -d/dw [arg{H(e^jw)}], is the rate of change of phase with respect to frequency. It can be computed as:
+ d/dw H(e^-jw)
+ g(w) = -------------
+ H(e^-jw)
+ where
+ H(z) = B(z)/A(z) = sum(b_k z^k)/sum(a_k z^k).
+ By the quotient rule,
+ A(z) d/dw B(z) - B(z) d/dw A(z)
+ d/dw H(z) = -------------------------------
+ A(z) A(z)
+ Substituting into the expression above yields:
+ A dB - B dA
+ g(w) = ----------- = dB/B - dA/A
+ A B
+ Note that,
+ d/dw B(e^-jw) = sum(k b_k e^-jwk)
+ d/dw A(e^-jw) = sum(k a_k e^-jwk)
+ which is just the FFT of the coefficients multiplied by a ramp.
+Calling Sequence
+ [g, w] = grpdelay (b) : returns the group delay g of the FIR filter with coefficients b. The response is evaluated at 512 angular frequencies between 0 and pi. w is a vector containing the 512 frequencies. The group delay is in units of samples. It can be converted to seconds by multiplying by the sampling period (or dividing by the sampling rate fs).
+ [g, w] = grpdelay (b, a) : returns the group delay of the rational IIR filter whose numerator has coefficients b and denominator coefficients a.
+ [g, w] = grpdelay (…, n) : returns the group delay evaluated at n angular frequencies. For fastest computation n should factor into a small number of small primes.
+ [g, w] = grpdelay (…, n, "whole") : evaluates the group delay at n frequencies between 0 and 2*pi.
+ [g, f] = grpdelay (…, n, Fs) : evaluates the group delay at n frequencies between 0 and Fs/2.
+ [g, f] = grpdelay (…, n, "whole", Fs) : evaluates the group delay at n frequencies between 0 and Fs.
+ [g, w] = grpdelay (…, w) : evaluates the group delay at frequencies w (radians per sample).
+ [g, f] = grpdelay (…, f, Fs) : evaluates the group delay at frequencies f (in Hz).
+ grpdelay(...) plots the group delay vs. frequency.
+ If the denominator of the computation becomes too small, the group delay is set to zero. (The group delay approaches infinity when there are poles or zeros very close to the unit circle in the z plane.)
+Parameters:
+ b : Coefficients of the numerator polynomial of the filter (FIR or IIR).
+ a : (optional): Coefficients of the denominator polynomial of the filter (only for IIR filters).
+ n : (optional): Number of angular frequencies at which to evaluate the group delay. For efficient computation, n should be a product of small primes.
+ "whole" : (optional): Specifies frequency range. If specified: Frequencies range from 0 to 2π radians per sample.
+ Fs : (numeric value): Frequencies range from 0 to Fs Hz or Fs radians per sample.
+ w : (optional): Vector of specific frequencies (in radians per sample) at which to evaluate the group delay.
+ f : (optional): Vector of specific frequencies (in Hz) at which to evaluate the group delay.
+ Fs : (optional): Sampling rate in Hz. Used to specify the frequency range when f or "whole" is specified.
+Dependencies: fft1
+*/
+function [gd,w] = grpdelay (b, a, n, whole, Fs)
+ lhs=argn(1);
+ rhs= argn(2);
+ if (rhs < 1 | rhs > 5) then
+ error("Invalid number of inputs")
+ end
+ HzFlag= %F;
+
+ select rhs
+ case 1 then
+ Fs=1; whole = "" ; n = 512 ; a = 1 ;
+ case 2 then
+ Fs=1; whole = "" ; n = 512 ;
+ case 3 then
+ Fs=1; whole = "" ;
+ case 4 then
+ Fs=1;
+ end
+ if (max(size(n)) > 1)
+ if (rhs > 4)
+ error("invalid inputs");
+ elseif (rhs > 3)
+ // grpdelay (B, A, F, Fs)
+ Fs = whole;
+ HzFlag = %T;
+ else
+ // grpdelay (B, A, W)
+ Fs = 1;
+ end
+ w = 2*%pi*n/Fs;
+ n = max(size (w) ) * 2;
+ whole = "";
+ else
+ if (rhs < 5)
+ Fs = 1; // return w in radians per sample
+ if (rhs < 4)
+ whole = "" ;
+ elseif (~type(whole)==10)
+ Fs = whole;
+ HzFlag = %T;
+ whole = "";
+ end
+ if (rhs < 3)
+ n = 512;
+ end
+ if (rhs < 2)
+ a = 1;
+ end
+ else
+ HzFlag = %T;
+ end
-//Parameters
-//b:
-//a:
-//nfft:
-
-//Description
-//This is an Octave function.
-//This function computes the group delay of a filter.
-//[g, w] = grpdelay(b) returns the group delay g of the FIR filter with coefficients b. The response is evaluated at 512 angular frequencies between 0 and pi. w is a vector containing the 512 frequencies.
-//[g, w] = grpdelay(b, a) returns the group delay of the rational IIR filter whose numerator has coefficients b and denominator coefficients a.
-//[g, w] = grpdelay(b, a, n) returns the group delay evaluated at n angular frequencies.
-//[g, w] = grpdelay(b, a, n, ’whole’) evaluates the group delay at n frequencies between 0 and 2*pi.
-//[g, f] = grpdelay(b, a, n, Fs) evaluates the group delay at n frequencies between 0 and Fs/2.
-//[g, f] = grpdelay(b, a, n, ’whole’, Fs) evaluates the group delay at n frequencies between 0 and Fs.
-//[g, w] = grpdelay(b, a, w) evaluates the group delay at frequencies w (radians per sample).
-//[g, f] = grpdelay(b, a, f, Fs) evaluates the group delay at frequencies f (in Hz).
-//Examples
-//grpdelay(1,2,3)
-//ans =
-// 0.
-// 0.
-// 0.
-
-funcprot(0);
-rhs = argn(2)
-if(rhs<1 | rhs>5)
-error("Wrong number of input arguments.")
-end
- select(rhs)
- case 1 then
- [gd,w] = callOctave("grpdelay",b)
- case 2 then
- [gd,w] = callOctave("grpdelay",b,a)
- case 3 then
- [gd,w] = callOctave("grpdelay",b,a,nfft)
- case 4 then
- [gd,w] = callOctave("grpdelay",b,a,nfft,whole)
- case 5 then
- [gd,w] = callOctave("grpdelay",b,a,nfft,whole,Fs)
- end
+ if (isempty (n))
+ n = 512;
+ end
+ if ( type(whole) == 10 && strcmp (whole, "whole"))
+ n = 2*n;
+ end
+
+ w = Fs*[0:n-1]/n;
+ end
+ if (~ HzFlag)
+ w = w * 2 * %pi;
+ end
+ a = a(:).';
+ b = b(:).';
+ oa = max(size(a)) -1; // order of a(z)
+ if (oa < 0) // a can be []
+ a = 1;
+ oa = 0;
+ end
+ ob = max(size(b)) -1; // order of b(z)
+ if (ob < 0) // b can be [] as well
+ b = 1;
+ ob = 0;
+ end
+ oc = oa + ob; // order of c(z)
+ c = conv (b, flipdim(conj (a),2)); // c(z) = b(z)*conj(a)(1/z)*z^(-oa)
+ cr = c.*(0:oc); // cr(z) = derivative of c wrt 1/z
+ num = fft1 (cr, n);
+ den = fft1 (c, n);
+ minmag = 10*%eps;
+ polebins = find (abs (den) < minmag);
+ for b = polebins
+ warning ("signal:grpdelay-singularity", "grpdelay: setting group delay to 0 at singularity");
+ num(b) = 0;
+ den(b) = 1;
+ //// try to preserve angle:
+ //// db = den(b);
+ //// den(b) = minmag*abs(num(b))*exp(j*atan2(imag(db),real(db)));
+ //// warning(sprintf('grpdelay: den(b) changed from %f to %f',db,den(b)));
+ end
+ gd = real (num ./ den) - oa;
+ if ( type(whole) == 10 && strcmp (whole, "whole"))
+ ns = n/2; // Matlab convention ... should be n/2 + 1
+ gd = gd(1:ns);
+ w = w(1:ns);
+ else
+ ns = n; // used in plot below
+ end
+ //// compatibility
+ gd = gd(:);
+ w = w(:);
+ if (lhs == 1)
+ if (HzFlag)
+ funits = "Hz";
+ else
+ funits = "radian/sample";
+ end
+ disp(" Plotting ")
+ plot (w(1:ns), gd(1:ns));
+ xlabel (["Frequency (" funits ")"]);
+ ylabel ("Group delay (samples)");
+ end
endfunction