summaryrefslogtreecommitdiff
path: root/macros/ar_psd.sci
diff options
context:
space:
mode:
authoravinashlalotra2025-04-26 20:09:12 +0530
committeravinashlalotra2025-04-26 20:09:12 +0530
commitea7dcdba3b83696b97cc431ee050b58f9a0f3507 (patch)
tree49ea8ba898b88535c261546f4e3accbdf4c83bdf /macros/ar_psd.sci
parent725d9ee2ddb254f57a896bb47e0e727759eb5901 (diff)
downloadFOSSEE-Signal-Processing-Toolbox-ea7dcdba3b83696b97cc431ee050b58f9a0f3507.tar.gz
FOSSEE-Signal-Processing-Toolbox-ea7dcdba3b83696b97cc431ee050b58f9a0f3507.tar.bz2
FOSSEE-Signal-Processing-Toolbox-ea7dcdba3b83696b97cc431ee050b58f9a0f3507.zip
formated source documentation pattern for generating docs
Diffstat (limited to 'macros/ar_psd.sci')
-rw-r--r--macros/ar_psd.sci4
1 files changed, 0 insertions, 4 deletions
diff --git a/macros/ar_psd.sci b/macros/ar_psd.sci
index 1953043..148e57a 100644
--- a/macros/ar_psd.sci
+++ b/macros/ar_psd.sci
@@ -1,6 +1,5 @@
function varargout = ar_psd(a, v, varargin)
//Calculate the power spectrum of the autoregressive model.
-
//Calling Sequence:
// [psd, f_out] = ar_psd(a, v)
// [psd, f_out] = ar_psd (a, v, freq)
@@ -8,7 +7,6 @@ function varargout = ar_psd(a, v, varargin)
// [psd, f_out] = ar_psd (..., range)
// [psd, f_out] = ar_psd (..., method)
// [psd, f_out] = ar_psd (..., plottype)
-
//Parameters:
//Every parameter except for the first two is optional.
//
@@ -26,10 +24,8 @@ function varargout = ar_psd(a, v, varargin)
//'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value.
//psd: estimate of power-spectral density.
//f_out: frequency values.
-
//Description:
//If the 'freq' argument is a vector (of frequencies) the spectrum is calculated using the polynomial method and the METHOD argument is ignored. For scalar 'freq', an integer power of 2, or method = "fft", causes the spectrum to be calculated by fft. Otherwise, the spectrum is calculated as a polynomial. It may be computationally more efficient to use the fft methodif length of the model is not much smaller than the number of frequency values. The spectrum is scaled so that spectral energy (area under spectrum) is the same as the time-domain energy (mean square of the signal).
-
//Examples:
//[a,b]= ar_psd([1,2,3], 2)