summaryrefslogtreecommitdiff
path: root/help/en_US/peig.xml
diff options
context:
space:
mode:
authorttt2018-12-06 13:42:14 +0530
committerttt2018-12-06 13:42:14 +0530
commitd6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795 (patch)
treefdbe9d1a10e7c256e86d7efae276fa75615cd0ba /help/en_US/peig.xml
parent3ffa5ac619587eadfdb4ffd3e2fee57fee385e21 (diff)
downloadFOSSEE-Signal-Processing-Toolbox-d6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795.tar.gz
FOSSEE-Signal-Processing-Toolbox-d6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795.tar.bz2
FOSSEE-Signal-Processing-Toolbox-d6e8cfd86be242d0a1a09a1ef7d8b7f3d12af795.zip
code by jitendra and added more test4.sce
Diffstat (limited to 'help/en_US/peig.xml')
-rw-r--r--help/en_US/peig.xml165
1 files changed, 44 insertions, 121 deletions
diff --git a/help/en_US/peig.xml b/help/en_US/peig.xml
index b19c370..9ea911c 100644
--- a/help/en_US/peig.xml
+++ b/help/en_US/peig.xml
@@ -33,138 +33,61 @@
[S,f] = peig(x,p,nfft,fs,nwin,noverlap)
[...] = peig(...,freqrange)
[...,v,e] = peig(...)
-
-
-
-
-
- </synopsis>
-</refsynopsisdiv>
-
-<refsection>
- <title>Parameters</title>
- <variablelist>
- <varlistentry><term>x:</term>
- <listitem><para> int|double - vector|matrix</para>
-<para>Input signal. In case of a matrix, each row of x represents a
+
+ Parameters:
+ x - int|double - vector|matrix
+ Input signal. In case of a matrix, each row of x represents a
seperate observation of the signal. If 'corr' flag is specified,
then x is the correlation matrix.
If w is not specified in the input, it is determined by the
algorithm. If x is real valued, then range of w is [0, pi].
- Otherwise, the range of w is [0, 2pi)</para>
-</listitem></varlistentry>
- </variablelist>
-
-<variablelist>
- <varlistentry><term>p:</term>
- <listitem><para> int|double - scalar|vector</para>
-<para>p(1) is the dimension of the signal subspace
+ Otherwise, the range of w is [0, 2pi)
+ p - int|double - scalar|vector
+ p(1) is the dimension of the signal subspace
p(2), if specified, represents a threshold that is multiplied by
- the smallest estimated eigenvalue of the signal's correlation matrix.</para>
-
-</listitem></varlistentry>
- </variablelist>
-
-<variablelist>
-<varlistentry><term>w:</term>
- <listitem><para> int|double - vector</para>
-<para>w is the vector of normalized frequencies over which the
- pseuspectrogram is to be computed.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-
-
-<variablelist>
-<varlistentry><term>nfft:</term>
- <listitem><para> int - scalar (Default = 256)</para>
-<para>Length of the fft used to compute pseudospectrum. The length of S
+ the smallest estimated eigenvalue of the signal's correlation matrix.
+ w - int|double - vector
+ w is the vector of normalized frequencies over which the
+ pseuspectrogram is to be computed.
+ nfft - int - scalar (Default = 256)
+ Length of the fft used to compute pseudospectrum. The length of S
(and hence w/f) depends on the type of values in x and nfft.
If x is real, length of s is (nfft/2 + 1) {Range of w = [0, pi]} if
nfft is even and (nfft+1)/2 {Range of w = [0, pi)} otherwise.
- If x is complex, length of s is nfft.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-
-<variablelist>
-<varlistentry><term>fs:</term>
- <listitem><para> int|double - scalar (Default = 1)</para>
-<para>Sampling rate. Used to convert the normalized frequencies (w) to
- actual values (f) and vice-versa.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-
-<variablelist>
-<varlistentry><term>nwin:</term>
- <listitem><para> int|double - scalar (int only)|vector (Default = 2*p(1))</para>
-<para> If nwin is scalar, it is the length of the rectangular window.
+ If x is complex, length of s is nfft.
+ fs - int|double - scalar (Default = 1)
+ Sampling rate. Used to convert the normalized frequencies (w) to
+ actual values (f) and vice-versa.
+ nwin - int|double - scalar (int only)|vector (Default = 2*p(1))
+ If nwin is scalar, it is the length of the rectangular window.
Otherwise, the vector input is considered as the window coefficients.
- Not used if 'corr' flag present.</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-<variablelist>
-<varlistentry><term>noverlap:</term>
- <listitem><para> int - scalar (Default = nwin-1)</para>
-<para> number of points by which successive windows overlap. noverlap not
- used if x is a matrix</para>
-
-</listitem></varlistentry>
-
-</variablelist>
-<variablelist>
-<varlistentry><term>freqrange:</term>
- <listitem><para> string</para>
-<para>The range of frequencies over which the pseudospetrogram is
+ Not used if 'corr' flag present.
+ If x is a vector, windowing not done in nwin in scalar. If x is a
+ matrix,
+ noverlap - int - scalar (Default = nwin-1)
+ number of points by which successive windows overlap. noverlap not
+ used if x is a matrix
+ freqrange - string
+ The range of frequencies over which the pseudospetrogram is
computed. Three possible values - 'onesided', 'twosided', 'centered'
'corr' flag
Presence indicates that the primary input x is actually a
correlation matrix
- </para>
-
-</listitem></varlistentry>
-
-</variablelist>
-</refsection>
-
-
-
-
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
-
- fs = 100;
- t = 0:1/fs:1-1/fs;
- s = 2*sin(2*%pi*25*t)+sin(2*%pi*35*t)+rand(1,100,"normal");
- [S,w]=peig(s,2,512,fs,'half');
- plot(w,S);
- ]]></programlisting>
-</refsection>
-
-<refsection>
- <title>See also</title>
- <simplelist type="inline">
- <member><link linkend="rooteig">| pmusic | pmtm | pcov | pmcov | pburg | pyulear | pwelch | corrmtx</link></member>
- </simplelist>
-</refsection>
-
-<refsection>
- <title>Authors</title>
- <simplelist type="vert">
- <member>Ayush Baid</member>
- <member>References</member>
- <member>[1] Petre Stoica and Randolph Moses, Introduction To Spectral</member>
- <member>Analysis, Prentice-Hall, 1997, pg. 15</member>
- <member>[2] S. J. Orfanidis, Optimum Signal Processing. An Introduction.</member>
- <member>2nd Ed., Macmillan, 1988.</member>
- </simplelist>
-</refsection>
+
+ Examples:
+ 1.
+ fs = 100;
+ t = 0:1/fs:1-1/fs;
+ s = 2*sin(2*%pi*25*t)+sin(2*%pi*35*t)+rand(1,100,"normal");
+ [S,w]=peig(s,2,512,fs,'half');
+ plot(w,S);
+ OUTPUT: gives the plot of power vs normalised frequencies
+ //2.
+ fs = 100;
+ t = 0:1/fs:1-1/fs;
+ s = 2*sin(2*%pi*25*t)+sin(2*%pi*35*t);
+ [S,w]=peig(s,2,512,fs,'half');
+ plot(w,S);
+ </synopsis>
+</refsynopsisdiv>
</refentry>