summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChandra Pratap2024-08-07 17:51:01 +0530
committerChandra Pratap2024-08-07 17:51:01 +0530
commitd230cc3015daea606ee534b76ffa134754cabd5f (patch)
tree4e83abd08b90f9648933c2861623ad467ef083ca
parente4f931f9cf6be9b1e48d641ac5b0750ddb133c2a (diff)
downloadFOSSEE-Signal-Processing-Toolbox-d230cc3015daea606ee534b76ffa134754cabd5f.tar.gz
FOSSEE-Signal-Processing-Toolbox-d230cc3015daea606ee534b76ffa134754cabd5f.tar.bz2
FOSSEE-Signal-Processing-Toolbox-d230cc3015daea606ee534b76ffa134754cabd5f.zip
Implement fwhmjlt.sci in Scilab
-rw-r--r--macros/fwhmjlt.sci171
1 files changed, 138 insertions, 33 deletions
diff --git a/macros/fwhmjlt.sci b/macros/fwhmjlt.sci
index 129bffc..0821930 100644
--- a/macros/fwhmjlt.sci
+++ b/macros/fwhmjlt.sci
@@ -1,40 +1,145 @@
-function [f]=fwhmjlt(y,varargin)
-//This function Computes peak full-width at half maximum
-
-//calling sequence
-//f = fwhm (y)
-//f = fwhm (x, y)
-//f = fwhm (…, "zero")
-//f = fwhm (…, "min")
-//f = fwhm (…, "alevel", level)
-//f = fwhm (…, "rlevel", level)
-
-//Description
-//Compute peak full-width at half maximum (FWHM) or at another level of peak maximum for vector or matrix data y, optionally sampled as y(x). If y is a matrix, return FWHM for each column as a row vector.
-//The default option "zero" computes fwhm at half maximum, i.e. 0.5*max(y). The option "min" computes fwhm at the middle curve, i.e. 0.5*(min(y)+max(y)).
-//The option "rlevel" computes full-width at the given relative level of peak profile
+function myfwhm = fwhmjlt(y, varargin)
+//This function computes peak full width at half minimum or at another level of peak minimum for vector or matrix data y supplied as input.
+//Calling Sequence:
+//f = fwhmjlt(y)
+//f = fwhmjlt(x, y)
+//f = fwhmjlt(…, "zero")
+//f = fwhmjlt(…, "min")
+//f = fwhmjlt(…, "alevel", level)
+//f = fwhmjlt(…, "rlevel", level)
+//Parameters:
+//y- vector or matrix. If y is a matrix, fwhm is calculated for each column as a row vector.
+//The second argument is by default "zero" which computes the fwhm at half maximum. If it is "min", fwhm is computed at middle curve.
+//The option "rlevel" computes full-width at the given relative level of peak profile.
//The option "alevel" computes full-width at the given absolute level of y.
-
-//Example
+//Description:
+//This function computes peak full width at half minimum or at another level of peak minimum for vector or matrix data y supplied as input.
+//This function returns 0 if FWHM does not exist.
+//Examples:
//t=-50:0.01:50;
//y=(1/(2*sqrt(2*%pi)))*exp(-(t.^2)/8);
//z=fwhmjlt(y)
//Output: 470.96442
-rhs = argn(2)
-if(rhs<1 | rhs>5)
-error("Wrong number of input arguments.")
-end
- select(rhs)
- case 1 then
- f = callOctave("fwhm",y)
- case 2 then
- f = callOctave("fwhm",y,varargin(1))
- case 3 then
- f = callOctave("fwhm",y,varargin(1),varargin(2))
- case 4 then
- f = callOctave("fwhm",y,varargin(1),varargin(2),varargin(3))
- case 5 then
- f = callOctave("fwhm",y,varargin(1),varargin(2),varargin(3),varargin(4))
- end
+ funcprot(0);
+ if nargin < 1 || nargin > 5
+ error("Wrong number of input arguments.");
+ end
+ opt = 'zero';
+ is_alevel = 0;
+ level = 0.5;
+ if nargin == 1
+ x = 1:max(size(y));
+ else
+ if type(varargin(1)) == 10
+ x = 1:max(size(y));
+ k = 1;
+ else
+ x = y;
+ y = varargin(1);
+ k = 2;
+ end
+ while k <= max(size(varargin))
+ if ~strcmp(varargin(k), 'alevel')
+ is_alevel = 1;
+ k = k+1;
+ if k > max(size(varargin))
+ error('option alevel requires an argument');
+ end
+ level = varargin(k);
+ if ~isreal(level) || max(size(level)) > 1
+ error('argument of alevel must be real number');
+ end
+ k = k+1;
+ break
+ end
+ if (~strcmp(varargin(k), 'zero') || ~strcmp(varargin(k), 'min'))
+ opt = varargin(k);
+ k = k+1;
+ end
+ if k > max(size(varargin)) break; end
+ if ~strcmp(varargin(k), 'rlevel')
+ k = k+1;
+ if k > max(size(varargin))
+ error('option rlevel requires an argument');
+ end
+ level = varargin(k);
+ if ~isreal(level) || max(size(level)) > 1 || level(1) < 0 || level(:) > 1
+ error('argument of rlevel must be real number from 0 to 1 (it is 0.5 for fwhm)');
+ end
+ k = k+1;
+ break
+ end
+ break
+ end
+ if k ~= max(size(varargin))+1
+ error('fwhmjlt: extraneous option(s)');
+ end
+ end
+
+ [nr, nc] = size(y);
+ if (nr == 1 & nc > 1) then
+ y = y';
+ nr = nc;
+ nc = 1;
+ end
+
+ if max(size(x)) ~= nr then
+ error('dimension of input arguments do not match');
+ end
+
+ if is_alevel then
+ y = y - level;
+ else
+ if opt == 'zero' then
+ y = y - level * repmat(mtlb_max(y), nr, 1);
+ else
+ y = y - level * repmat((mtlb_max(y) + mtlb_min(y)), nr, 1);
+ end
+ end
+
+ myfwhm = zeros(1, nc);
+ for n = 1:nc
+ yy = y(:, n);
+ ind = find((yy(1:$ - 1) .* yy(2:$)) <= 0);
+ if mtlb_max(size(ind)) >= 2 & yy(ind(1)) > 0
+ ind = ind(2:$);
+ end
+ [mx, imax] = mtlb_max(yy);
+ if max(size(ind)) >= 2 & imax >= ind(1) & imax <= ind($) then
+ ind1 = ind(1);
+ ind2 = ind1 + 1;
+ xx1 = x(ind1) - yy(ind1) * (x(ind2) - x(ind1)) / (yy(ind2) - yy(ind1));
+ ind1 = ind($);
+ ind2 = ind1 + 1;
+ xx2 = x(ind1) - yy(ind1) * (x(ind2) - x(ind1)) / (yy(ind2) - yy(ind1));
+ myfwhm(n) = xx2 - xx1;
+ end
+ end
endfunction
+
+//tests:
+//x = -%pi:0.001:%pi; y = cos(x);
+//assert_checkalmostequal(fwhmjlt(x, y), 2.094395, 0.5*10^-5);
+//assert_checktrue( abs(fwhmjlt(x, y) - 2*%pi/3) < 0.01 );
+
+//assert_checktrue(fwhmjlt(-10:10) == 0 && fwhmjlt(ones(1,50)) == 0);
+
+//x=1:3;
+//y=[-1,3,-1];
+//assert_checktrue(abs(fwhmjlt(x,y)-0.75)<0.001 && abs(fwhmjlt(x,y,'zero')-0.75) < 0.001 && abs(fwhmjlt(x,y,'min')-1.0) < 0.001);
+
+//x=1:3;
+//y=[-1,3,-1];
+//assert_checktrue(abs(fwhmjlt(x,y, 'rlevel', 0.1)-1.35) < 0.001 && abs(fwhmjlt(x,y,'zero', 'rlevel', 0.1)-1.35) < 0.001 && abs(fwhmjlt(x,y,'min', 'rlevel', 0.1)-1.40) < 0.001);
+
+//x=1:3;
+//y=[-1,3,-1];
+//assert_checktrue(abs(fwhmjlt(x,y, 'alevel', 2.5)-0.25) < 0.001 && abs(fwhmjlt(x,y,'alevel', -0.5)-1.75) < 0.001);
+
+//x=-10:10;
+//assert_checktrue(fwhmjlt(x.*x) == 0);
+
+//x=-5:5;
+//y=18-x.*x;
+//assert_checktrue( abs(fwhmjlt(y)-6.0) < 0.001 && abs(fwhmjlt(x,y,'zero')-6.0) < 0.001 && abs(fwhmjlt(x,y,'min')-7.0 ) < 0.001);