1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
// Copyright (C) 2004, 2008 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Common Public License.
//
// $Id: IpVector.hpp 1316 2008-09-10 18:42:05Z andreasw $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPVECTOR_HPP__
#define __IPVECTOR_HPP__
#include "IpTypes.hpp"
#include "IpTaggedObject.hpp"
#include "IpCachedResults.hpp"
#include "IpSmartPtr.hpp"
#include "IpJournalist.hpp"
#include "IpException.hpp"
#include <vector>
namespace Ipopt
{
/** Exception that can be used to flag unimplemented linear algebra
* methods */
DECLARE_STD_EXCEPTION(UNIMPLEMENTED_LINALG_METHOD_CALLED);
/* forward declarations */
class VectorSpace;
/** Vector Base Class.
* This is the base class for all derived vector types. Those vectors
* are meant to store entities like iterates, Lagrangian multipliers,
* constraint values etc. The implementation of a vector type depends
* on the computational environment (e.g. just a double array on a shared
* memory machine, or distributed double arrays for a distributed
* memory machine.)
*
* Deriving from Vector: This class inherits from tagged object to
* implement an advanced caching scheme. Because of this, the
* TaggedObject method ObjectChanged() must be called each time the
* Vector changes. If you overload the XXXX_Impl protected methods,
* this taken care of (along with caching if possible) for you. If
* you have additional methods in your derived class that change the
* underlying data (vector values), you MUST remember to call
* ObjectChanged() AFTER making the change!
*/
class Vector : public TaggedObject
{
public:
/** @name Constructor/Destructor */
//@{
/** Constructor. It has to be given a pointer to the
* corresponding VectorSpace.
*/
Vector(const VectorSpace* owner_space);
/** Destructor */
virtual ~Vector();
//@}
/** Create new Vector of the same type with uninitialized data */
Vector* MakeNew() const;
/** Create new Vector of the same type and copy the data over */
Vector* MakeNewCopy() const;
/**@name Standard BLAS-1 Operations
* (derived classes do NOT overload these
* methods, instead, overload the
* protected versions of these methods). */
//@{
/** Copy the data of the vector x into this vector (DCOPY). */
void Copy(const Vector& x);
/** Scales the vector by scalar alpha (DSCAL) */
void Scal(Number alpha);
/** Add the multiple alpha of vector x to this vector (DAXPY) */
void Axpy(Number alpha, const Vector &x);
/** Computes inner product of vector x with this (DDOT) */
Number Dot(const Vector &x) const;
/** Computes the 2-norm of this vector (DNRM2) */
Number Nrm2() const;
/** Computes the 1-norm of this vector (DASUM) */
Number Asum() const;
/** Computes the max-norm of this vector (based on IDAMAX) */
Number Amax() const;
//@}
/** @name Additional (Non-BLAS) Vector Methods
* (derived classes do NOT overload these
* methods, instead, overload the
* protected versions of these methods). */
//@{
/** Set each element in the vector to the scalar alpha. */
void Set(Number alpha);
/** Element-wise division \f$y_i \gets y_i/x_i\f$*/
void ElementWiseDivide(const Vector& x);
/** Element-wise multiplication \f$y_i \gets y_i*x_i\f$ */
void ElementWiseMultiply(const Vector& x);
/** Element-wise max against entries in x */
void ElementWiseMax(const Vector& x);
/** Element-wise min against entries in x */
void ElementWiseMin(const Vector& x);
/** Reciprocates the entries in the vector */
void ElementWiseReciprocal();
/** Absolute values of the entries in the vector */
void ElementWiseAbs();
/** Element-wise square root of the entries in the vector */
void ElementWiseSqrt();
/** Replaces the vector values with their sgn values
( -1 if x_i < 0, 0 if x_i == 0, and 1 if x_i > 0)
*/
void ElementWiseSgn();
/** Add scalar to every vector component */
void AddScalar(Number scalar);
/** Returns the maximum value in the vector */
Number Max() const;
/** Returns the minimum value in the vector */
Number Min() const;
/** Returns the sum of the vector entries */
Number Sum() const;
/** Returns the sum of the logs of each vector entry */
Number SumLogs() const;
//@}
/** @name Methods for specialized operations. A prototype
* implementation is provided, but for efficient implementation
* those should be specially implemented.
*/
//@{
/** Add one vector, y = a * v1 + c * y. This is automatically
* reduced to call AddTwoVectors. */
void AddOneVector(Number a, const Vector& v1, Number c);
/** Add two vectors, y = a * v1 + b * v2 + c * y. Here, this
* vector is y */
void AddTwoVectors(Number a, const Vector& v1,
Number b, const Vector& v2, Number c);
/** Fraction to the boundary parameter. Computes \f$\alpha =
* \max\{\bar\alpha\in(0,1] : x + \bar\alpha \Delta \geq (1-\tau)x\}\f$
*/
Number FracToBound(const Vector& delta, Number tau) const;
/** Add the quotient of two vectors, y = a * z/s + c * y. */
void AddVectorQuotient(Number a, const Vector& z, const Vector& s,
Number c);
//@}
/** Method for determining if all stored numbers are valid (i.e.,
* no Inf or Nan). */
bool HasValidNumbers() const;
/** @name Accessor methods */
//@{
/** Dimension of the Vector */
Index Dim() const;
/** Return the owner VectorSpace*/
SmartPtr<const VectorSpace> OwnerSpace() const;
//@}
/** @name Output methods
* (derived classes do NOT overload these
* methods, instead, overload the
* protected versions of these methods). */
//@{
/** Print the entire vector */
void Print(SmartPtr<const Journalist> jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent=0,
const std::string& prefix="") const;
void Print(const Journalist& jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent=0,
const std::string& prefix="") const;
//@}
protected:
/** @name implementation methods (derived classes MUST
* overload these pure virtual protected methods.)
*/
//@{
/** Copy the data of the vector x into this vector (DCOPY). */
virtual void CopyImpl(const Vector& x)=0;
/** Scales the vector by scalar alpha (DSCAL) */
virtual void ScalImpl(Number alpha)=0;
/** Add the multiple alpha of vector x to this vector (DAXPY) */
virtual void AxpyImpl(Number alpha, const Vector &x)=0;
/** Computes inner product of vector x with this (DDOT) */
virtual Number DotImpl(const Vector &x) const =0;
/** Computes the 2-norm of this vector (DNRM2) */
virtual Number Nrm2Impl() const =0;
/** Computes the 1-norm of this vector (DASUM) */
virtual Number AsumImpl() const =0;
/** Computes the max-norm of this vector (based on IDAMAX) */
virtual Number AmaxImpl() const =0;
/** Set each element in the vector to the scalar alpha. */
virtual void SetImpl(Number alpha)=0;
/** Element-wise division \f$y_i \gets y_i/x_i\f$*/
virtual void ElementWiseDivideImpl(const Vector& x)=0;
/** Element-wise multiplication \f$y_i \gets y_i*x_i\f$ */
virtual void ElementWiseMultiplyImpl(const Vector& x)=0;
/** Element-wise max against entries in x */
virtual void ElementWiseMaxImpl(const Vector& x)=0;
/** Element-wise min against entries in x */
virtual void ElementWiseMinImpl(const Vector& x)=0;
/** Reciprocates the elements of the vector */
virtual void ElementWiseReciprocalImpl()=0;
/** Take elementwise absolute values of the elements of the vector */
virtual void ElementWiseAbsImpl()=0;
/** Take elementwise square-root of the elements of the vector */
virtual void ElementWiseSqrtImpl()=0;
/** Replaces entries with sgn of the entry */
virtual void ElementWiseSgnImpl()=0;
/** Add scalar to every component of vector */
virtual void AddScalarImpl(Number scalar)=0;
/** Max value in the vector */
virtual Number MaxImpl() const=0;
/** Min number in the vector */
virtual Number MinImpl() const=0;
/** Sum of entries in the vector */
virtual Number SumImpl() const=0;
/** Sum of logs of entries in the vector */
virtual Number SumLogsImpl() const=0;
/** Add two vectors (a * v1 + b * v2). Result is stored in this
vector. */
virtual void AddTwoVectorsImpl(Number a, const Vector& v1,
Number b, const Vector& v2, Number c);
/** Fraction to boundary parameter. */
virtual Number FracToBoundImpl(const Vector& delta, Number tau) const;
/** Add the quotient of two vectors */
virtual void AddVectorQuotientImpl(Number a, const Vector& z,
const Vector& s, Number c);
/** Method for determining if all stored numbers are valid (i.e.,
* no Inf or Nan). A default implementation using Asum is
* provided. */
virtual bool HasValidNumbersImpl() const;
/** Print the entire vector */
virtual void PrintImpl(const Journalist& jnlst,
EJournalLevel level,
EJournalCategory category,
const std::string& name,
Index indent,
const std::string& prefix) const =0;
//@}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Default constructor */
Vector();
/** Copy constructor */
Vector(const Vector&);
/** Overloaded Equals Operator */
Vector& operator=(const Vector&);
//@}
/** Vector Space */
const SmartPtr<const VectorSpace> owner_space_;
/**@name CachedResults data members */
//@{
/** Cache for dot products */
mutable CachedResults<Number> dot_cache_;
mutable TaggedObject::Tag nrm2_cache_tag_;
mutable Number cached_nrm2_;
mutable TaggedObject::Tag asum_cache_tag_;
mutable Number cached_asum_;
mutable TaggedObject::Tag amax_cache_tag_;
mutable Number cached_amax_;
mutable TaggedObject::Tag max_cache_tag_;
mutable Number cached_max_;
mutable TaggedObject::Tag min_cache_tag_;
mutable Number cached_min_;
mutable TaggedObject::Tag sum_cache_tag_;
mutable Number cached_sum_;
mutable TaggedObject::Tag sumlogs_cache_tag_;
mutable Number cached_sumlogs_;
mutable TaggedObject::Tag valid_cache_tag_;
mutable bool cached_valid_;
// AW: I removed this cache since it gets in the way for the
// quality function search
// /** Cache for FracToBound */
// mutable CachedResults<Number> frac_to_bound_cache_;
//@}
};
/** VectorSpace base class, corresponding to the Vector base class.
* For each Vector implementation, a corresponding VectorSpace has
* to be implemented. A VectorSpace is able to create new Vectors
* of a specific type. The VectorSpace should also store
* information that is common to all Vectors of that type. For
* example, the dimension of a Vector is stored in the VectorSpace
* base class.
*/
class VectorSpace : public ReferencedObject
{
public:
/** @name Constructors/Destructors */
//@{
/** Constructor, given the dimension of all vectors generated by
* this VectorSpace.
*/
VectorSpace(Index dim);
/** Destructor */
virtual ~VectorSpace()
{}
//@}
/** Pure virtual method for creating a new Vector of the
* corresponding type.
*/
virtual Vector* MakeNew() const=0;
/** Accessor function for the dimension of the vectors of this type.*/
Index Dim() const
{
return dim_;
}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** default constructor */
VectorSpace();
/** Copy constructor */
VectorSpace(const VectorSpace&);
/** Overloaded Equals Operator */
VectorSpace& operator=(const VectorSpace&);
//@}
/** Dimension of the vectors in this vector space. */
const Index dim_;
};
/* inline methods */
inline
Vector::~Vector()
{}
inline
Vector::Vector(const VectorSpace* owner_space)
:
TaggedObject(),
owner_space_(owner_space),
dot_cache_(10),
nrm2_cache_tag_(0),
asum_cache_tag_(0),
amax_cache_tag_(0),
max_cache_tag_(0),
min_cache_tag_(0),
sum_cache_tag_(0),
sumlogs_cache_tag_(0),
cached_valid_(0)
{
DBG_ASSERT(IsValid(owner_space_));
}
inline
Vector* Vector::MakeNew() const
{
return owner_space_->MakeNew();
}
inline
Vector* Vector::MakeNewCopy() const
{
// ToDo: We can probably copy also the cached values for Norms etc here
Vector* copy = MakeNew();
copy->Copy(*this);
return copy;
}
inline
void Vector::Copy(const Vector& x)
{
CopyImpl(x);
ObjectChanged();
// Also copy any cached scalar values from the original vector
// ToDo: Check if that is too much overhead
TaggedObject::Tag x_tag = x.GetTag();
if (x_tag == x.nrm2_cache_tag_) {
nrm2_cache_tag_ = GetTag();
cached_nrm2_ = x.cached_nrm2_;
}
if (x_tag == x.asum_cache_tag_) {
asum_cache_tag_ = GetTag();
cached_asum_ = x.cached_asum_;
}
if (x_tag == x.amax_cache_tag_) {
amax_cache_tag_ = GetTag();
cached_amax_ = x.cached_amax_;
}
if (x_tag == x.max_cache_tag_) {
max_cache_tag_ = GetTag();
cached_max_ = x.cached_max_;
}
if (x_tag == x.min_cache_tag_) {
min_cache_tag_ = GetTag();
cached_min_ = x.cached_min_;
}
if (x_tag == x.sum_cache_tag_) {
sum_cache_tag_ = GetTag();
cached_sum_ = x.cached_sum_;
}
if (x_tag == x.sumlogs_cache_tag_) {
sumlogs_cache_tag_ = GetTag();
cached_sumlogs_ = x.cached_sumlogs_;
}
}
inline
void Vector::Axpy(Number alpha, const Vector &x)
{
AxpyImpl(alpha, x);
ObjectChanged();
}
inline
Number Vector::Dot(const Vector &x) const
{
// The current implementation of the caching doesn't allow to have
// a dependency of something with itself. Therefore, we use the
// Nrm2 method if the dot product is to be taken with the vector
// itself. Might be more efficient anyway.
if (this==&x) {
Number nrm2 = Nrm2();
return nrm2*nrm2;
}
Number retValue;
if (!dot_cache_.GetCachedResult2Dep(retValue, this, &x)) {
retValue = DotImpl(x);
dot_cache_.AddCachedResult2Dep(retValue, this, &x);
}
return retValue;
}
inline
Number Vector::Nrm2() const
{
if (nrm2_cache_tag_ != GetTag()) {
cached_nrm2_ = Nrm2Impl();
nrm2_cache_tag_ = GetTag();
}
return cached_nrm2_;
}
inline
Number Vector::Asum() const
{
if (asum_cache_tag_ != GetTag()) {
cached_asum_ = AsumImpl();
asum_cache_tag_ = GetTag();
}
return cached_asum_;
}
inline
Number Vector::Amax() const
{
if (amax_cache_tag_ != GetTag()) {
cached_amax_ = AmaxImpl();
amax_cache_tag_ = GetTag();
}
return cached_amax_;
}
inline
Number Vector::Sum() const
{
if (sum_cache_tag_ != GetTag()) {
cached_sum_ = SumImpl();
sum_cache_tag_ = GetTag();
}
return cached_sum_;
}
inline
Number Vector::SumLogs() const
{
if (sumlogs_cache_tag_ != GetTag()) {
cached_sumlogs_ = SumLogsImpl();
sumlogs_cache_tag_ = GetTag();
}
return cached_sumlogs_;
}
inline
void Vector::ElementWiseSgn()
{
ElementWiseSgnImpl();
ObjectChanged();
}
inline
void Vector::Set(Number alpha)
{
// Could initialize caches here
SetImpl(alpha);
ObjectChanged();
}
inline
void Vector::ElementWiseDivide(const Vector& x)
{
ElementWiseDivideImpl(x);
ObjectChanged();
}
inline
void Vector::ElementWiseMultiply(const Vector& x)
{
ElementWiseMultiplyImpl(x);
ObjectChanged();
}
inline
void Vector::ElementWiseReciprocal()
{
ElementWiseReciprocalImpl();
ObjectChanged();
}
inline
void Vector::ElementWiseMax(const Vector& x)
{
// Could initialize some caches here
ElementWiseMaxImpl(x);
ObjectChanged();
}
inline
void Vector::ElementWiseMin(const Vector& x)
{
// Could initialize some caches here
ElementWiseMinImpl(x);
ObjectChanged();
}
inline
void Vector::ElementWiseAbs()
{
// Could initialize some caches here
ElementWiseAbsImpl();
ObjectChanged();
}
inline
void Vector::ElementWiseSqrt()
{
ElementWiseSqrtImpl();
ObjectChanged();
}
inline
void Vector::AddScalar(Number scalar)
{
// Could initialize some caches here
AddScalarImpl(scalar);
ObjectChanged();
}
inline
Number Vector::Max() const
{
if (max_cache_tag_ != GetTag()) {
cached_max_ = MaxImpl();
max_cache_tag_ = GetTag();
}
return cached_max_;
}
inline
Number Vector::Min() const
{
if (min_cache_tag_ != GetTag()) {
cached_min_ = MinImpl();
min_cache_tag_ = GetTag();
}
return cached_min_;
}
inline
void Vector::AddOneVector(Number a, const Vector& v1, Number c)
{
AddTwoVectors(a, v1, 0., v1, c);
}
inline
void Vector::AddTwoVectors(Number a, const Vector& v1,
Number b, const Vector& v2, Number c)
{
AddTwoVectorsImpl(a, v1, b, v2, c);
ObjectChanged();
}
inline
Number Vector::FracToBound(const Vector& delta, Number tau) const
{
/* AW: I avoid the caching here, since it leads to overhead in the
quality function search. Caches for this are in
CalculatedQuantities.
Number retValue;
std::vector<const TaggedObject*> tdeps(1);
tdeps[0] = δ
std::vector<Number> sdeps(1);
sdeps[0] = tau;
if (!frac_to_bound_cache_.GetCachedResult(retValue, tdeps, sdeps)) {
retValue = FracToBoundImpl(delta, tau);
frac_to_bound_cache_.AddCachedResult(retValue, tdeps, sdeps);
}
return retValue;
*/
return FracToBoundImpl(delta, tau);
}
inline
void Vector::AddVectorQuotient(Number a, const Vector& z,
const Vector& s, Number c)
{
AddVectorQuotientImpl(a, z, s, c);
ObjectChanged();
}
inline
bool Vector::HasValidNumbers() const
{
if (valid_cache_tag_ != GetTag()) {
cached_valid_ = HasValidNumbersImpl();
valid_cache_tag_ = GetTag();
}
return cached_valid_;
}
inline
Index Vector::Dim() const
{
return owner_space_->Dim();
}
inline
SmartPtr<const VectorSpace> Vector::OwnerSpace() const
{
return owner_space_;
}
inline
VectorSpace::VectorSpace(Index dim)
:
dim_(dim)
{}
} // namespace Ipopt
// Macro definitions for debugging vectors
#if COIN_IPOPT_VERBOSITY == 0
# define DBG_PRINT_VECTOR(__verbose_level, __vec_name, __vec)
#else
# define DBG_PRINT_VECTOR(__verbose_level, __vec_name, __vec) \
if (dbg_jrnl.Verbosity() >= (__verbose_level)) { \
if (dbg_jrnl.Jnlst()!=NULL) { \
(__vec).Print(dbg_jrnl.Jnlst(), \
J_ERROR, J_DBG, \
__vec_name, \
dbg_jrnl.IndentationLevel()*2, \
"# "); \
} \
}
#endif //if COIN_IPOPT_VERBOSITY == 0
#endif
|