summaryrefslogtreecommitdiff
path: root/thirdparty/windows/include/coin/CoinFactorization.hpp
blob: 0a532bf00b2488741e03be94a8a6c769949789da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
/* $Id: CoinFactorization.hpp 1767 2015-01-05 12:36:13Z forrest $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

/* 
   Authors
   
   John Forrest

 */
#ifndef CoinFactorization_H
#define CoinFactorization_H
//#define COIN_ONE_ETA_COPY 100

#include <iostream>
#include <string>
#include <cassert>
#include <cstdio>
#include <cmath>
#include "CoinTypes.hpp"
#include "CoinIndexedVector.hpp"

class CoinPackedMatrix;
/** This deals with Factorization and Updates

    This class started with a parallel simplex code I was writing in the
    mid 90's.  The need for parallelism led to many complications and
    I have simplified as much as I could to get back to this.

    I was aiming at problems where I might get speed-up so I was looking at dense
    problems or ones with structure.  This led to permuting input and output
    vectors and to increasing the number of rows each rank-one update.  This is 
    still in as a minor overhead.

    I have also put in handling for hyper-sparsity.  I have taken out
    all outer loop unrolling, dense matrix handling and most of the
    book-keeping for slacks.  Also I always use FTRAN approach to updating
    even if factorization fairly dense.  All these could improve performance.

    I blame some of the coding peculiarities on the history of the code
    but mostly it is just because I can't do elegant code (or useful
    comments).

    I am assuming that 32 bits is enough for number of rows or columns, but CoinBigIndex
    may be redefined to get 64 bits.
 */


class CoinFactorization {
   friend void CoinFactorizationUnitTest( const std::string & mpsDir );

public:

  /**@name Constructors and destructor and copy */
  //@{
  /// Default constructor
    CoinFactorization (  );
  /// Copy constructor 
  CoinFactorization ( const CoinFactorization &other);

  /// Destructor
   ~CoinFactorization (  );
  /// Delete all stuff (leaves as after CoinFactorization())
  void almostDestructor();
  /// Debug show object (shows one representation)
  void show_self (  ) const;
  /// Debug - save on file - 0 if no error
  int saveFactorization (const char * file  ) const;
  /** Debug - restore from file - 0 if no error on file.
      If factor true then factorizes as if called from ClpFactorization
  */
  int restoreFactorization (const char * file  , bool factor=false) ;
  /// Debug - sort so can compare
  void sort (  ) const;
  /// = copy
    CoinFactorization & operator = ( const CoinFactorization & other );
  //@}

  /**@name Do factorization */
  //@{
  /** When part of LP - given by basic variables.
  Actually does factorization.
  Arrays passed in have non negative value to say basic.
  If status is okay, basic variables have pivot row - this is only needed
  If status is singular, then basic variables have pivot row
  and ones thrown out have -1
  returns 0 -okay, -1 singular, -2 too many in basis, -99 memory */
  int factorize ( const CoinPackedMatrix & matrix, 
		  int rowIsBasic[], int columnIsBasic[] , 
		  double areaFactor = 0.0 );
  /** When given as triplets.
  Actually does factorization.  maximumL is guessed maximum size of L part of
  final factorization, maximumU of U part.  These are multiplied by
  areaFactor which can be computed by user or internally.  
  Arrays are copied in.  I could add flag to delete arrays to save a 
  bit of memory.
  If status okay, permutation has pivot rows - this is only needed
  If status is singular, then basic variables have pivot row
  and ones thrown out have -1
  returns 0 -okay, -1 singular, -99 memory */
  int factorize ( int numberRows,
		  int numberColumns,
		  CoinBigIndex numberElements,
		  CoinBigIndex maximumL,
		  CoinBigIndex maximumU,
		  const int indicesRow[],
		  const int indicesColumn[], const double elements[] ,
		  int permutation[],
		  double areaFactor = 0.0);
  /** Two part version for maximum flexibility
      This part creates arrays for user to fill.
      estimateNumberElements is safe estimate of number
      returns 0 -okay, -99 memory */
  int factorizePart1 ( int numberRows,
		       int numberColumns,
		       CoinBigIndex estimateNumberElements,
		       int * indicesRow[],
		       int * indicesColumn[],
		       CoinFactorizationDouble * elements[],
		  double areaFactor = 0.0);
  /** This is part two of factorization
      Arrays belong to factorization and were returned by part 1
      If status okay, permutation has pivot rows - this is only needed
      If status is singular, then basic variables have pivot row
      and ones thrown out have -1
      returns 0 -okay, -1 singular, -99 memory */
  int factorizePart2 (int permutation[],int exactNumberElements);
  /// Condition number - product of pivots after factorization
  double conditionNumber() const;
  
  //@}

  /**@name general stuff such as permutation or status */
  //@{ 
  /// Returns status
  inline int status (  ) const {
    return status_;
  }
  /// Sets status
  inline void setStatus (  int value)
  {  status_=value;  }
  /// Returns number of pivots since factorization
  inline int pivots (  ) const {
    return numberPivots_;
  }
  /// Sets number of pivots since factorization
  inline void setPivots (  int value ) 
  { numberPivots_=value; }
  /// Returns address of permute region
  inline int *permute (  ) const {
    return permute_.array();
  }
  /// Returns address of pivotColumn region (also used for permuting)
  inline int *pivotColumn (  ) const {
    return pivotColumn_.array();
  }
  /// Returns address of pivot region
  inline CoinFactorizationDouble *pivotRegion (  ) const {
    return pivotRegion_.array();
  }
  /// Returns address of permuteBack region
  inline int *permuteBack (  ) const {
    return permuteBack_.array();
  }
  /// Returns address of lastRow region
  inline int *lastRow (  ) const {
    return lastRow_.array();
  }
  /** Returns address of pivotColumnBack region (also used for permuting)
      Now uses firstCount to save memory allocation */
  inline int *pivotColumnBack (  ) const {
    //return firstCount_.array();
    return pivotColumnBack_.array();
  }
  /// Start of each row in L
  inline CoinBigIndex * startRowL() const
  { return startRowL_.array();}

  /// Start of each column in L
  inline CoinBigIndex * startColumnL() const
  { return startColumnL_.array();}

  /// Index of column in row for L
  inline int * indexColumnL() const
  { return indexColumnL_.array();}

  /// Row indices of L
  inline int * indexRowL() const
  { return indexRowL_.array();}

  /// Elements in L (row copy)
  inline CoinFactorizationDouble * elementByRowL() const
  { return elementByRowL_.array();}

  /// Number of Rows after iterating
  inline int numberRowsExtra (  ) const {
    return numberRowsExtra_;
  }
  /// Set number of Rows after factorization
  inline void setNumberRows(int value)
  { numberRows_ = value; }
  /// Number of Rows after factorization
  inline int numberRows (  ) const {
    return numberRows_;
  }
  /// Number in L
  inline CoinBigIndex numberL() const
  { return numberL_;}

  /// Base of L
  inline CoinBigIndex baseL() const
  { return baseL_;}
  /// Maximum of Rows after iterating
  inline int maximumRowsExtra (  ) const {
    return maximumRowsExtra_;
  }
  /// Total number of columns in factorization
  inline int numberColumns (  ) const {
    return numberColumns_;
  }
  /// Total number of elements in factorization
  inline int numberElements (  ) const {
    return totalElements_;
  }
  /// Length of FT vector
  inline int numberForrestTomlin (  ) const {
    return numberInColumn_.array()[numberColumnsExtra_];
  }
  /// Number of good columns in factorization
  inline int numberGoodColumns (  ) const {
    return numberGoodU_;
  }
  /// Whether larger areas needed
  inline double areaFactor (  ) const {
    return areaFactor_;
  }
  inline void areaFactor ( double value ) {
    areaFactor_=value;
  }
  /// Returns areaFactor but adjusted for dense
  double adjustedAreaFactor() const;
  /// Allows change of pivot accuracy check 1.0 == none >1.0 relaxed
  inline void relaxAccuracyCheck(double value)
  { relaxCheck_ = value;}
  inline double getAccuracyCheck() const
  { return relaxCheck_;}
  /// Level of detail of messages
  inline int messageLevel (  ) const {
    return messageLevel_ ;
  }
  void messageLevel (  int value );
  /// Maximum number of pivots between factorizations
  inline int maximumPivots (  ) const {
    return maximumPivots_ ;
  }
  void maximumPivots (  int value );

  /// Gets dense threshold
  inline int denseThreshold() const 
    { return denseThreshold_;}
  /// Sets dense threshold
  inline void setDenseThreshold(int value)
    { denseThreshold_ = value;}
  /// Pivot tolerance
  inline double pivotTolerance (  ) const {
    return pivotTolerance_ ;
  }
  void pivotTolerance (  double value );
  /// Zero tolerance
  inline double zeroTolerance (  ) const {
    return zeroTolerance_ ;
  }
  void zeroTolerance (  double value );
#ifndef COIN_FAST_CODE
  /// Whether slack value is +1 or -1
  inline double slackValue (  ) const {
    return slackValue_ ;
  }
  void slackValue (  double value );
#endif
  /// Returns maximum absolute value in factorization
  double maximumCoefficient() const;
  /// true if Forrest Tomlin update, false if PFI 
  inline bool forrestTomlin() const
  { return doForrestTomlin_;}
  inline void setForrestTomlin(bool value)
  { doForrestTomlin_=value;}
  /// True if FT update and space
  inline bool spaceForForrestTomlin() const
  {
    CoinBigIndex start = startColumnU_.array()[maximumColumnsExtra_];
    CoinBigIndex space = lengthAreaU_ - ( start + numberRowsExtra_ );
    return (space>=0)&&doForrestTomlin_;
  }
  //@}

  /**@name some simple stuff */
  //@{

  /// Returns number of dense rows
  inline int numberDense() const
  { return numberDense_;}

  /// Returns number in U area
  inline CoinBigIndex numberElementsU (  ) const {
    return lengthU_;
  }
  /// Setss number in U area
  inline void setNumberElementsU(CoinBigIndex value)
  { lengthU_ = value; }
  /// Returns length of U area
  inline CoinBigIndex lengthAreaU (  ) const {
    return lengthAreaU_;
  }
  /// Returns number in L area
  inline CoinBigIndex numberElementsL (  ) const {
    return lengthL_;
  }
  /// Returns length of L area
  inline CoinBigIndex lengthAreaL (  ) const {
    return lengthAreaL_;
  }
  /// Returns number in R area
  inline CoinBigIndex numberElementsR (  ) const {
    return lengthR_;
  }
  /// Number of compressions done
  inline CoinBigIndex numberCompressions() const
  { return numberCompressions_;}
  /// Number of entries in each row
  inline int * numberInRow() const
  { return numberInRow_.array();}
  /// Number of entries in each column
  inline int * numberInColumn() const
  { return numberInColumn_.array();}
  /// Elements of U
  inline CoinFactorizationDouble * elementU() const
  { return elementU_.array();}
  /// Row indices of U
  inline int * indexRowU() const
  { return indexRowU_.array();}
  /// Start of each column in U
  inline CoinBigIndex * startColumnU() const
  { return startColumnU_.array();}
  /// Maximum number of Columns after iterating
  inline int maximumColumnsExtra()
  { return maximumColumnsExtra_;}
  /** L to U bias
      0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias
  */
  inline int biasLU() const
  { return biasLU_;}
  inline void setBiasLU(int value)
  { biasLU_=value;}
  /** Array persistence flag
      If 0 then as now (delete/new)
      1 then only do arrays if bigger needed
      2 as 1 but give a bit extra if bigger needed
  */
  inline int persistenceFlag() const
  { return persistenceFlag_;}
  void setPersistenceFlag(int value);
  //@}

  /**@name rank one updates which do exist */
  //@{

  /** Replaces one Column to basis,
   returns 0=OK, 1=Probably OK, 2=singular, 3=no room
      If checkBeforeModifying is true will do all accuracy checks
      before modifying factorization.  Whether to set this depends on
      speed considerations.  You could just do this on first iteration
      after factorization and thereafter re-factorize
   partial update already in U */
  int replaceColumn ( CoinIndexedVector * regionSparse,
		      int pivotRow,
		      double pivotCheck ,
		      bool checkBeforeModifying=false,
		      double acceptablePivot=1.0e-8);
  /** Combines BtranU and delete elements
      If deleted is NULL then delete elements
      otherwise store where elements are
  */
  void replaceColumnU ( CoinIndexedVector * regionSparse,
			CoinBigIndex * deleted,
			int internalPivotRow);
#ifdef ABC_USE_COIN_FACTORIZATION
  /** returns empty fake vector carved out of existing
      later - maybe use associated arrays */
  CoinIndexedVector * fakeVector(CoinIndexedVector * vector,
				 int already=0) const;
  void deleteFakeVector(CoinIndexedVector * vector,
			CoinIndexedVector * fakeVector) const;
  /** Checks if can replace one Column to basis,
      returns update alpha
      Fills in region for use later
      partial update already in U */
  double checkReplacePart1 (  CoinIndexedVector * regionSparse,
				     int pivotRow);
  /** Checks if can replace one Column to basis,
      returns update alpha
      Fills in region for use later
      partial update in vector */
  double checkReplacePart1 (  CoinIndexedVector * regionSparse,
				      CoinIndexedVector * partialUpdate,
				     int pivotRow);
  /** Checks if can replace one Column in basis,
      returns 0=OK, 1=Probably OK, 2=singular, 3=no room, 5 max pivots */
  int checkReplacePart2 ( int pivotRow,
				  double btranAlpha, 
				  double ftranAlpha, 
				  double ftAlpha,
				  double acceptablePivot = 1.0e-8);
  /** Replaces one Column to basis,
      partial update already in U */
  void replaceColumnPart3 ( CoinIndexedVector * regionSparse,
			    int pivotRow,
			    double alpha );
  /** Replaces one Column to basis,
      partial update in vector */
  void replaceColumnPart3 ( CoinIndexedVector * regionSparse,
			    CoinIndexedVector * partialUpdate,
			    int pivotRow,
			    double alpha );
  /** Updates one column (FTRAN) from regionSparse2
      Tries to do FT update
      number returned is negative if no room
      regionSparse starts as zero and is zero at end.
      Note - if regionSparse2 packed on input - will be packed on output
      long regions
  */
  int updateColumnFT ( CoinIndexedVector & regionSparse);
  int updateColumnFTPart1 ( CoinIndexedVector & regionSparse) ;
  void updateColumnFTPart2 ( CoinIndexedVector & regionSparse) ;
  /** Updates one column (FTRAN) - long region
      Tries to do FT update
      puts partial update in vector */
  void updateColumnFT ( CoinIndexedVector & regionSparseFT,
			CoinIndexedVector & partialUpdate,
			int which);
  /** Updates one column (FTRAN) long region */
  int updateColumn ( CoinIndexedVector & regionSparse) const;
  /** Updates one column (FTRAN) from regionFT
      Tries to do FT update
      number returned is negative if no room.
      Also updates regionOther - long region*/
  int updateTwoColumnsFT ( CoinIndexedVector & regionSparseFT,
			   CoinIndexedVector & regionSparseOther);
  /** Updates one column (BTRAN) - long region*/
  int updateColumnTranspose ( CoinIndexedVector & regionSparse) const;
  /** Updates one column (FTRAN) - long region */
  void updateColumnCpu ( CoinIndexedVector & regionSparse,int whichCpu) const;
  /** Updates one column (BTRAN) - long region */
  void updateColumnTransposeCpu ( CoinIndexedVector & regionSparse,int whichCpu) const;
  /** Updates one full column (FTRAN) - long region */
  void updateFullColumn ( CoinIndexedVector & regionSparse) const;
  /** Updates one full column (BTRAN) - long region */
  void updateFullColumnTranspose ( CoinIndexedVector & regionSparse) const;
  /** Updates one column for dual steepest edge weights (FTRAN) - long region */
  void updateWeights ( CoinIndexedVector & regionSparse) const;
  /// Returns true if wants tableauColumn in replaceColumn
  inline bool wantsTableauColumn() const
  {return false;}
  /// Pivot tolerance
  inline double minimumPivotTolerance (  ) const {
    return pivotTolerance_ ;
  }
  inline void minimumPivotTolerance (  double value )
  { pivotTolerance(value);}
  /// Says parallel
  inline void setParallelMode(int value)
  { parallelMode_=value;}
  /// Sets solve mode
  inline void setSolveMode(int value)
  { parallelMode_ &= 3;parallelMode_ |= (value<<2);}
  /// Sets solve mode
  inline int solveMode() const
  { return parallelMode_ >> 2;}
  /// Update partial Ftran by R update
  void updatePartialUpdate(CoinIndexedVector & partialUpdate);
  /// Makes a non-singular basis by replacing variables
  void makeNonSingular(int *  COIN_RESTRICT sequence);
#endif
  //@}

  /**@name various uses of factorization (return code number elements) 
   which user may want to know about */
  //@{
  /** Updates one column (FTRAN) from regionSparse2
      Tries to do FT update
      number returned is negative if no room
      regionSparse starts as zero and is zero at end.
      Note - if regionSparse2 packed on input - will be packed on output
  */
  int updateColumnFT ( CoinIndexedVector * regionSparse,
		       CoinIndexedVector * regionSparse2);
  /** This version has same effect as above with FTUpdate==false
      so number returned is always >=0 */
  int updateColumn ( CoinIndexedVector * regionSparse,
		     CoinIndexedVector * regionSparse2,
		     bool noPermute=false) const;
  /** Updates one column (FTRAN) from region2
      Tries to do FT update
      number returned is negative if no room.
      Also updates region3
      region1 starts as zero and is zero at end */
  int updateTwoColumnsFT ( CoinIndexedVector * regionSparse1,
			   CoinIndexedVector * regionSparse2,
			   CoinIndexedVector * regionSparse3,
			   bool noPermuteRegion3=false) ;
  /** Updates one column (BTRAN) from regionSparse2
      regionSparse starts as zero and is zero at end 
      Note - if regionSparse2 packed on input - will be packed on output
  */
  int updateColumnTranspose ( CoinIndexedVector * regionSparse,
			      CoinIndexedVector * regionSparse2) const;
  /** makes a row copy of L for speed and to allow very sparse problems */
  void goSparse();
  /**  get sparse threshold */
  inline int sparseThreshold ( ) const
  { return sparseThreshold_;}
  /**  set sparse threshold */
  void sparseThreshold ( int value );
  //@}
  /// *** Below this user may not want to know about

  /**@name various uses of factorization (return code number elements) 
   which user may not want to know about (left over from my LP code) */
  //@{
  /// Get rid of all memory
  inline void clearArrays()
  { gutsOfDestructor();}
  //@}

  /**@name various updates - none of which have been written! */
  //@{

  /** Adds given elements to Basis and updates factorization,
      can increase size of basis. Returns rank */
  int add ( CoinBigIndex numberElements,
	       int indicesRow[],
	       int indicesColumn[], double elements[] );

  /** Adds one Column to basis,
      can increase size of basis. Returns rank */
  int addColumn ( CoinBigIndex numberElements,
		     int indicesRow[], double elements[] );

  /** Adds one Row to basis,
      can increase size of basis. Returns rank */
  int addRow ( CoinBigIndex numberElements,
		  int indicesColumn[], double elements[] );

  /// Deletes one Column from basis, returns rank
  int deleteColumn ( int Row );
  /// Deletes one Row from basis, returns rank
  int deleteRow ( int Row );

  /** Replaces one Row in basis,
      At present assumes just a singleton on row is in basis
      returns 0=OK, 1=Probably OK, 2=singular, 3 no space */
  int replaceRow ( int whichRow, int numberElements,
		      const int indicesColumn[], const double elements[] );
  /// Takes out all entries for given rows
  void emptyRows(int numberToEmpty, const int which[]);
  //@}
  /**@name used by ClpFactorization */
  /// See if worth going sparse
  void checkSparse();
  /// For statistics
#if 0 //def CLP_FACTORIZATION_INSTRUMENT
  inline bool collectStatistics() const
  { return collectStatistics_;}
  /// For statistics 
  inline void setCollectStatistics(bool onOff) const
  { collectStatistics_ = onOff;}
#else
  inline bool collectStatistics() const
  { return true;}
  /// For statistics 
  inline void setCollectStatistics(bool onOff) const
  { }
#endif
  /// The real work of constructors etc 0 just scalars, 1 bit normal 
  void gutsOfDestructor(int type=1);
  /// 1 bit - tolerances etc, 2 more, 4 dummy arrays
  void gutsOfInitialize(int type);
  void gutsOfCopy(const CoinFactorization &other);

  /// Reset all sparsity etc statistics
  void resetStatistics();


  //@}

  /**@name used by factorization */
  /// Gets space for a factorization, called by constructors
  void getAreas ( int numberRows,
		  int numberColumns,
		  CoinBigIndex maximumL,
		  CoinBigIndex maximumU );

  /** PreProcesses raw triplet data.
      state is 0 - triplets, 1 - some counts etc , 2 - .. */
  void preProcess ( int state,
		    int possibleDuplicates = -1 );
  /// Does most of factorization
  int factor (  );
protected:
  /** Does sparse phase of factorization
      return code is <0 error, 0= finished */
  int factorSparse (  );
  /** Does sparse phase of factorization (for smaller problems)
      return code is <0 error, 0= finished */
  int factorSparseSmall (  );
  /** Does sparse phase of factorization (for larger problems)
      return code is <0 error, 0= finished */
  int factorSparseLarge (  );
  /** Does dense phase of factorization
      return code is <0 error, 0= finished */
  int factorDense (  );

  /// Pivots when just one other row so faster?
  bool pivotOneOtherRow ( int pivotRow,
			  int pivotColumn );
  /// Does one pivot on Row Singleton in factorization
  bool pivotRowSingleton ( int pivotRow,
			   int pivotColumn );
  /// Does one pivot on Column Singleton in factorization
  bool pivotColumnSingleton ( int pivotRow,
			      int pivotColumn );

  /** Gets space for one Column with given length,
   may have to do compression  (returns True if successful),
   also moves existing vector,
   extraNeeded is over and above present */
  bool getColumnSpace ( int iColumn,
			int extraNeeded );

  /** Reorders U so contiguous and in order (if there is space)
      Returns true if it could */
  bool reorderU();
  /**  getColumnSpaceIterateR.  Gets space for one extra R element in Column
       may have to do compression  (returns true)
       also moves existing vector */
  bool getColumnSpaceIterateR ( int iColumn, double value,
			       int iRow);
  /**  getColumnSpaceIterate.  Gets space for one extra U element in Column
       may have to do compression  (returns true)
       also moves existing vector.
       Returns -1 if no memory or where element was put
       Used by replaceRow (turns off R version) */
  CoinBigIndex getColumnSpaceIterate ( int iColumn, double value,
			       int iRow);
  /** Gets space for one Row with given length,
  may have to do compression  (returns True if successful),
  also moves existing vector */
  bool getRowSpace ( int iRow, int extraNeeded );

  /** Gets space for one Row with given length while iterating,
  may have to do compression  (returns True if successful),
  also moves existing vector */
  bool getRowSpaceIterate ( int iRow,
			    int extraNeeded );
  /// Checks that row and column copies look OK
  void checkConsistency (  );
  /// Adds a link in chain of equal counts
  inline void addLink ( int index, int count ) {
    int *nextCount = nextCount_.array();
    int *firstCount = firstCount_.array();
    int *lastCount = lastCount_.array();
    int next = firstCount[count];
      lastCount[index] = -2 - count;
    if ( next < 0 ) {
      //first with that count
      firstCount[count] = index;
      nextCount[index] = -1;
    } else {
      firstCount[count] = index;
      nextCount[index] = next;
      lastCount[next] = index;
  }}
  /// Deletes a link in chain of equal counts
  inline void deleteLink ( int index ) {
    int *nextCount = nextCount_.array();
    int *firstCount = firstCount_.array();
    int *lastCount = lastCount_.array();
    int next = nextCount[index];
    int last = lastCount[index];
    if ( last >= 0 ) {
      nextCount[last] = next;
    } else {
      int count = -last - 2;

      firstCount[count] = next;
    }
    if ( next >= 0 ) {
      lastCount[next] = last;
    }
    nextCount[index] = -2;
    lastCount[index] = -2;
    return;
  }
  /// Separate out links with same row/column count
  void separateLinks(int count,bool rowsFirst);
  /// Cleans up at end of factorization
  void cleanup (  );

  /// Updates part of column (FTRANL)
  void updateColumnL ( CoinIndexedVector * region, int * indexIn ) const;
  /// Updates part of column (FTRANL) when densish
  void updateColumnLDensish ( CoinIndexedVector * region, int * indexIn ) const;
  /// Updates part of column (FTRANL) when sparse
  void updateColumnLSparse ( CoinIndexedVector * region, int * indexIn ) const;
  /// Updates part of column (FTRANL) when sparsish
  void updateColumnLSparsish ( CoinIndexedVector * region, int * indexIn ) const;

  /// Updates part of column (FTRANR) without FT update
  void updateColumnR ( CoinIndexedVector * region ) const;
  /** Updates part of column (FTRANR) with FT update.
      Also stores update after L and R */
  void updateColumnRFT ( CoinIndexedVector * region, int * indexIn );

  /// Updates part of column (FTRANU)
  void updateColumnU ( CoinIndexedVector * region, int * indexIn) const;

  /// Updates part of column (FTRANU) when sparse
  void updateColumnUSparse ( CoinIndexedVector * regionSparse, 
			     int * indexIn) const;
  /// Updates part of column (FTRANU) when sparsish
  void updateColumnUSparsish ( CoinIndexedVector * regionSparse, 
			       int * indexIn) const;
  /// Updates part of column (FTRANU)
  int updateColumnUDensish ( double * COIN_RESTRICT region, 
			     int * COIN_RESTRICT regionIndex) const;
  /// Updates part of 2 columns (FTRANU) real work
  void updateTwoColumnsUDensish (
				 int & numberNonZero1,
				 double * COIN_RESTRICT region1, 
				 int * COIN_RESTRICT index1,
				 int & numberNonZero2,
				 double * COIN_RESTRICT region2, 
				 int * COIN_RESTRICT index2) const;
  /// Updates part of column PFI (FTRAN) (after rest)
  void updateColumnPFI ( CoinIndexedVector * regionSparse) const; 
  /// Permutes back at end of updateColumn
  void permuteBack ( CoinIndexedVector * regionSparse, 
		     CoinIndexedVector * outVector) const;

  /// Updates part of column transpose PFI (BTRAN) (before rest)
  void updateColumnTransposePFI ( CoinIndexedVector * region) const;
  /** Updates part of column transpose (BTRANU),
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeU ( CoinIndexedVector * region,
				int smallestIndex) const;
  /** Updates part of column transpose (BTRANU) when sparsish,
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUSparsish ( CoinIndexedVector * region,
					int smallestIndex) const;
  /** Updates part of column transpose (BTRANU) when densish,
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUDensish ( CoinIndexedVector * region,
				       int smallestIndex) const;
  /** Updates part of column transpose (BTRANU) when sparse,
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUSparse ( CoinIndexedVector * region) const;
  /** Updates part of column transpose (BTRANU) by column
      assumes index is sorted i.e. region is correct */
  void updateColumnTransposeUByColumn ( CoinIndexedVector * region,
					int smallestIndex) const;

  /// Updates part of column transpose (BTRANR)
  void updateColumnTransposeR ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANR) when dense
  void updateColumnTransposeRDensish ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANR) when sparse
  void updateColumnTransposeRSparse ( CoinIndexedVector * region ) const;

  /// Updates part of column transpose (BTRANL)
  void updateColumnTransposeL ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when densish by column
  void updateColumnTransposeLDensish ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when densish by row
  void updateColumnTransposeLByRow ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when sparsish by row
  void updateColumnTransposeLSparsish ( CoinIndexedVector * region ) const;
  /// Updates part of column transpose (BTRANL) when sparse (by Row)
  void updateColumnTransposeLSparse ( CoinIndexedVector * region ) const;
public:
  /** Replaces one Column to basis for PFI
   returns 0=OK, 1=Probably OK, 2=singular, 3=no room.
   In this case region is not empty - it is incoming variable (updated)
  */
  int replaceColumnPFI ( CoinIndexedVector * regionSparse,
			 int pivotRow, double alpha);
protected:
  /** Returns accuracy status of replaceColumn
      returns 0=OK, 1=Probably OK, 2=singular */
  int checkPivot(double saveFromU, double oldPivot) const;
  /********************************* START LARGE TEMPLATE ********/
#ifdef INT_IS_8
#define COINFACTORIZATION_BITS_PER_INT 64
#define COINFACTORIZATION_SHIFT_PER_INT 6
#define COINFACTORIZATION_MASK_PER_INT 0x3f
#else
#define COINFACTORIZATION_BITS_PER_INT 32
#define COINFACTORIZATION_SHIFT_PER_INT 5
#define COINFACTORIZATION_MASK_PER_INT 0x1f
#endif
  template <class T>  inline bool
  pivot ( int pivotRow,
	  int pivotColumn,
	  CoinBigIndex pivotRowPosition,
	  CoinBigIndex pivotColumnPosition,
	  CoinFactorizationDouble work[],
	  unsigned int workArea2[],
	  int increment2,
	  T markRow[] ,
	  int largeInteger)
{
  int *indexColumnU = indexColumnU_.array();
  CoinBigIndex *startColumnU = startColumnU_.array();
  int *numberInColumn = numberInColumn_.array();
  CoinFactorizationDouble *elementU = elementU_.array();
  int *indexRowU = indexRowU_.array();
  CoinBigIndex *startRowU = startRowU_.array();
  int *numberInRow = numberInRow_.array();
  CoinFactorizationDouble *elementL = elementL_.array();
  int *indexRowL = indexRowL_.array();
  int *saveColumn = saveColumn_.array();
  int *nextRow = nextRow_.array();
  int *lastRow = lastRow_.array() ;

  //store pivot columns (so can easily compress)
  int numberInPivotRow = numberInRow[pivotRow] - 1;
  CoinBigIndex startColumn = startColumnU[pivotColumn];
  int numberInPivotColumn = numberInColumn[pivotColumn] - 1;
  CoinBigIndex endColumn = startColumn + numberInPivotColumn + 1;
  int put = 0;
  CoinBigIndex startRow = startRowU[pivotRow];
  CoinBigIndex endRow = startRow + numberInPivotRow + 1;

  if ( pivotColumnPosition < 0 ) {
    for ( pivotColumnPosition = startRow; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
      int iColumn = indexColumnU[pivotColumnPosition];
      if ( iColumn != pivotColumn ) {
	saveColumn[put++] = iColumn;
      } else {
        break;
      }
    }
  } else {
    for (CoinBigIndex i = startRow ; i < pivotColumnPosition ; i++ ) {
      saveColumn[put++] = indexColumnU[i];
    }
  }
  assert (pivotColumnPosition<endRow);
  assert (indexColumnU[pivotColumnPosition]==pivotColumn);
  pivotColumnPosition++;
  for ( ; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
    saveColumn[put++] = indexColumnU[pivotColumnPosition];
  }
  //take out this bit of indexColumnU
  int next = nextRow[pivotRow];
  int last = lastRow[pivotRow];

  nextRow[last] = next;
  lastRow[next] = last;
  nextRow[pivotRow] = numberGoodU_;	//use for permute
  lastRow[pivotRow] = -2;
  numberInRow[pivotRow] = 0;
  //store column in L, compress in U and take column out
  CoinBigIndex l = lengthL_;

  if ( l + numberInPivotColumn > lengthAreaL_ ) {
    //need more memory
    if ((messageLevel_&4)!=0) 
      printf("more memory needed in middle of invert\n");
    return false;
  }
  //l+=currentAreaL_->elementByColumn-elementL;
  CoinBigIndex lSave = l;

  CoinBigIndex * startColumnL = startColumnL_.array();
  startColumnL[numberGoodL_] = l;	//for luck and first time
  numberGoodL_++;
  startColumnL[numberGoodL_] = l + numberInPivotColumn;
  lengthL_ += numberInPivotColumn;
  if ( pivotRowPosition < 0 ) {
    for ( pivotRowPosition = startColumn; pivotRowPosition < endColumn; pivotRowPosition++ ) {
      int iRow = indexRowU[pivotRowPosition];
      if ( iRow != pivotRow ) {
	indexRowL[l] = iRow;
	elementL[l] = elementU[pivotRowPosition];
	markRow[iRow] = static_cast<T>(l - lSave);
	l++;
	//take out of row list
	CoinBigIndex start = startRowU[iRow];
	CoinBigIndex end = start + numberInRow[iRow];
	CoinBigIndex where = start;

	while ( indexColumnU[where] != pivotColumn ) {
	  where++;
	}			/* endwhile */
#if DEBUG_COIN
	if ( where >= end ) {
	  abort (  );
	}
#endif
	indexColumnU[where] = indexColumnU[end - 1];
	numberInRow[iRow]--;
      } else {
	break;
      }
    }
  } else {
    CoinBigIndex i;

    for ( i = startColumn; i < pivotRowPosition; i++ ) {
      int iRow = indexRowU[i];

      markRow[iRow] = static_cast<T>(l - lSave);
      indexRowL[l] = iRow;
      elementL[l] = elementU[i];
      l++;
      //take out of row list
      CoinBigIndex start = startRowU[iRow];
      CoinBigIndex end = start + numberInRow[iRow];
      CoinBigIndex where = start;

      while ( indexColumnU[where] != pivotColumn ) {
	where++;
      }				/* endwhile */
#if DEBUG_COIN
      if ( where >= end ) {
	abort (  );
      }
#endif
      indexColumnU[where] = indexColumnU[end - 1];
      numberInRow[iRow]--;
      assert (numberInRow[iRow]>=0);
    }
  }
  assert (pivotRowPosition<endColumn);
  assert (indexRowU[pivotRowPosition]==pivotRow);
  CoinFactorizationDouble pivotElement = elementU[pivotRowPosition];
  CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement;

  pivotRegion_.array()[numberGoodU_] = pivotMultiplier;
  pivotRowPosition++;
  for ( ; pivotRowPosition < endColumn; pivotRowPosition++ ) {
    int iRow = indexRowU[pivotRowPosition];
    
    markRow[iRow] = static_cast<T>(l - lSave);
    indexRowL[l] = iRow;
    elementL[l] = elementU[pivotRowPosition];
    l++;
    //take out of row list
    CoinBigIndex start = startRowU[iRow];
    CoinBigIndex end = start + numberInRow[iRow];
    CoinBigIndex where = start;
    
    while ( indexColumnU[where] != pivotColumn ) {
      where++;
    }				/* endwhile */
#if DEBUG_COIN
    if ( where >= end ) {
      abort (  );
    }
#endif
    indexColumnU[where] = indexColumnU[end - 1];
    numberInRow[iRow]--;
    assert (numberInRow[iRow]>=0);
  }
  markRow[pivotRow] = static_cast<T>(largeInteger);
  //compress pivot column (move pivot to front including saved)
  numberInColumn[pivotColumn] = 0;
  //use end of L for temporary space
  int *indexL = &indexRowL[lSave];
  CoinFactorizationDouble *multipliersL = &elementL[lSave];

  //adjust
  int j;

  for ( j = 0; j < numberInPivotColumn; j++ ) {
    multipliersL[j] *= pivotMultiplier;
  }
  //zero out fill
  CoinBigIndex iErase;
  for ( iErase = 0; iErase < increment2 * numberInPivotRow;
	iErase++ ) {
    workArea2[iErase] = 0;
  }
  CoinBigIndex added = numberInPivotRow * numberInPivotColumn;
  unsigned int *temp2 = workArea2;
  int * nextColumn = nextColumn_.array();

  //pack down and move to work
  int jColumn;
  for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
    int iColumn = saveColumn[jColumn];
    CoinBigIndex startColumn = startColumnU[iColumn];
    CoinBigIndex endColumn = startColumn + numberInColumn[iColumn];
    int iRow = indexRowU[startColumn];
    CoinFactorizationDouble value = elementU[startColumn];
    double largest;
    CoinBigIndex put = startColumn;
    CoinBigIndex positionLargest = -1;
    CoinFactorizationDouble thisPivotValue = 0.0;

    //compress column and find largest not updated
    bool checkLargest;
    int mark = markRow[iRow];

    if ( mark == largeInteger+1 ) {
      largest = fabs ( value );
      positionLargest = put;
      put++;
      checkLargest = false;
    } else {
      //need to find largest
      largest = 0.0;
      checkLargest = true;
      if ( mark != largeInteger ) {
	//will be updated
	work[mark] = value;
	int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	int bit = mark & COINFACTORIZATION_MASK_PER_INT;

	temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	added--;
      } else {
	thisPivotValue = value;
      }
    }
    CoinBigIndex i;
    for ( i = startColumn + 1; i < endColumn; i++ ) {
      iRow = indexRowU[i];
      value = elementU[i];
      int mark = markRow[iRow];

      if ( mark == largeInteger+1 ) {
	//keep
	indexRowU[put] = iRow;
	elementU[put] = value;
	if ( checkLargest ) {
	  double absValue = fabs ( value );

	  if ( absValue > largest ) {
	    largest = absValue;
	    positionLargest = put;
	  }
	}
	put++;
      } else if ( mark != largeInteger ) {
	//will be updated
	work[mark] = value;
	int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	int bit = mark & COINFACTORIZATION_MASK_PER_INT;

	temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	added--;
      } else {
	thisPivotValue = value;
      }
    }
    //slot in pivot
    elementU[put] = elementU[startColumn];
    indexRowU[put] = indexRowU[startColumn];
    if ( positionLargest == startColumn ) {
      positionLargest = put;	//follow if was largest
    }
    put++;
    elementU[startColumn] = thisPivotValue;
    indexRowU[startColumn] = pivotRow;
    //clean up counts
    startColumn++;
    numberInColumn[iColumn] = put - startColumn;
    int * numberInColumnPlus = numberInColumnPlus_.array();
    numberInColumnPlus[iColumn]++;
    startColumnU[iColumn]++;
    //how much space have we got
    int next = nextColumn[iColumn];
    CoinBigIndex space;

    space = startColumnU[next] - put - numberInColumnPlus[next];
    //assume no zero elements
    if ( numberInPivotColumn > space ) {
      //getColumnSpace also moves fixed part
      if ( !getColumnSpace ( iColumn, numberInPivotColumn ) ) {
	return false;
      }
      //redo starts
      if (positionLargest >= 0)
         positionLargest = positionLargest + startColumnU[iColumn] - startColumn;
      startColumn = startColumnU[iColumn];
      put = startColumn + numberInColumn[iColumn];
    }
    double tolerance = zeroTolerance_;

    int *nextCount = nextCount_.array();
    for ( j = 0; j < numberInPivotColumn; j++ ) {
      value = work[j] - thisPivotValue * multipliersL[j];
      double absValue = fabs ( value );

      if ( absValue > tolerance ) {
	work[j] = 0.0;
	assert (put<lengthAreaU_); 
	elementU[put] = value;
	indexRowU[put] = indexL[j];
	if ( absValue > largest ) {
	  largest = absValue;
	  positionLargest = put;
	}
	put++;
      } else {
	work[j] = 0.0;
	added--;
	int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	int bit = j & COINFACTORIZATION_MASK_PER_INT;

	if ( temp2[word] & ( 1 << bit ) ) {
	  //take out of row list
	  iRow = indexL[j];
	  CoinBigIndex start = startRowU[iRow];
	  CoinBigIndex end = start + numberInRow[iRow];
	  CoinBigIndex where = start;

	  while ( indexColumnU[where] != iColumn ) {
	    where++;
	  }			/* endwhile */
#if DEBUG_COIN
	  if ( where >= end ) {
	    abort (  );
	  }
#endif
	  indexColumnU[where] = indexColumnU[end - 1];
	  numberInRow[iRow]--;
	} else {
	  //make sure won't be added
	  int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = j & COINFACTORIZATION_MASK_PER_INT;

	  temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	}
      }
    }
    numberInColumn[iColumn] = put - startColumn;
    //move largest
    if ( positionLargest >= 0 ) {
      value = elementU[positionLargest];
      iRow = indexRowU[positionLargest];
      elementU[positionLargest] = elementU[startColumn];
      indexRowU[positionLargest] = indexRowU[startColumn];
      elementU[startColumn] = value;
      indexRowU[startColumn] = iRow;
    }
    //linked list for column
    if ( nextCount[iColumn + numberRows_] != -2 ) {
      //modify linked list
      deleteLink ( iColumn + numberRows_ );
      addLink ( iColumn + numberRows_, numberInColumn[iColumn] );
    }
    temp2 += increment2;
  }
  //get space for row list
  unsigned int *putBase = workArea2;
  int bigLoops = numberInPivotColumn >> COINFACTORIZATION_SHIFT_PER_INT;
  int i = 0;

  // do linked lists and update counts
  while ( bigLoops ) {
    bigLoops--;
    int bit;
    for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) {
      unsigned int *putThis = putBase;
      int iRow = indexL[i];

      //get space
      int number = 0;
      int jColumn;

      for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
	unsigned int test = *putThis;

	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	number += test;
      }
      int next = nextRow[iRow];
      CoinBigIndex space;

      space = startRowU[next] - startRowU[iRow];
      number += numberInRow[iRow];
      if ( space < number ) {
	if ( !getRowSpace ( iRow, number ) ) {
	  return false;
	}
      }
      // now do
      putThis = putBase;
      next = nextRow[iRow];
      number = numberInRow[iRow];
      CoinBigIndex end = startRowU[iRow] + number;
      int saveIndex = indexColumnU[startRowU[next]];

      //add in
      for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
	unsigned int test = *putThis;

	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	indexColumnU[end] = saveColumn[jColumn];
	end += test;
      }
      //put back next one in case zapped
      indexColumnU[startRowU[next]] = saveIndex;
      markRow[iRow] = static_cast<T>(largeInteger+1);
      number = end - startRowU[iRow];
      numberInRow[iRow] = number;
      deleteLink ( iRow );
      addLink ( iRow, number );
    }
    putBase++;
  }				/* endwhile */
  int bit;

  for ( bit = 0; i < numberInPivotColumn; i++, bit++ ) {
    unsigned int *putThis = putBase;
    int iRow = indexL[i];

    //get space
    int number = 0;
    int jColumn;

    for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
      unsigned int test = *putThis;

      putThis += increment2;
      test = 1 - ( ( test >> bit ) & 1 );
      number += test;
    }
    int next = nextRow[iRow];
    CoinBigIndex space;

    space = startRowU[next] - startRowU[iRow];
    number += numberInRow[iRow];
    if ( space < number ) {
      if ( !getRowSpace ( iRow, number ) ) {
	return false;
      }
    }
    // now do
    putThis = putBase;
    next = nextRow[iRow];
    number = numberInRow[iRow];
    CoinBigIndex end = startRowU[iRow] + number;
    int saveIndex;

    saveIndex = indexColumnU[startRowU[next]];

    //add in
    for ( jColumn = 0; jColumn < numberInPivotRow; jColumn++ ) {
      unsigned int test = *putThis;

      putThis += increment2;
      test = 1 - ( ( test >> bit ) & 1 );

      indexColumnU[end] = saveColumn[jColumn];
      end += test;
    }
    indexColumnU[startRowU[next]] = saveIndex;
    markRow[iRow] = static_cast<T>(largeInteger+1);
    number = end - startRowU[iRow];
    numberInRow[iRow] = number;
    deleteLink ( iRow );
    addLink ( iRow, number );
  }
  markRow[pivotRow] = static_cast<T>(largeInteger+1);
  //modify linked list for pivots
  deleteLink ( pivotRow );
  deleteLink ( pivotColumn + numberRows_ );
  totalElements_ += added;
  return true;
}

  /********************************* END LARGE TEMPLATE ********/
  //@}
////////////////// data //////////////////
protected:

  /**@name data */
  //@{
  /// Pivot tolerance
  double pivotTolerance_;
  /// Zero tolerance
  double zeroTolerance_;
#ifndef COIN_FAST_CODE
  /// Whether slack value is  +1 or -1
  double slackValue_;
#else
#ifndef slackValue_
#define slackValue_ -1.0
#endif
#endif
  /// How much to multiply areas by
  double areaFactor_;
  /// Relax check on accuracy in replaceColumn
  double relaxCheck_;
  /// Number of Rows in factorization
  int numberRows_;
  /// Number of Rows after iterating
  int numberRowsExtra_;
  /// Maximum number of Rows after iterating
  int maximumRowsExtra_;
  /// Number of Columns in factorization
  int numberColumns_;
  /// Number of Columns after iterating
  int numberColumnsExtra_;
  /// Maximum number of Columns after iterating
  int maximumColumnsExtra_;
  /// Number factorized in U (not row singletons)
  int numberGoodU_;
  /// Number factorized in L
  int numberGoodL_;
  /// Maximum number of pivots before factorization
  int maximumPivots_;
  /// Number pivots since last factorization
  int numberPivots_;
  /// Number of elements in U (to go)
  ///       or while iterating total overall
  CoinBigIndex totalElements_;
  /// Number of elements after factorization
  CoinBigIndex factorElements_;
  /// Pivot order for each Column
  CoinIntArrayWithLength pivotColumn_;
  /// Permutation vector for pivot row order
  CoinIntArrayWithLength permute_;
  /// DePermutation vector for pivot row order
  CoinIntArrayWithLength permuteBack_;
  /// Inverse Pivot order for each Column
  CoinIntArrayWithLength pivotColumnBack_;
  /// Status of factorization
  int status_;

  /** 0 - no increasing rows - no permutations,
   1 - no increasing rows but permutations 
   2 - increasing rows 
     - taken out as always 2 */
  //int increasingRows_;

  /// Number of trials before rejection
  int numberTrials_;
  /// Start of each Row as pointer
  CoinBigIndexArrayWithLength startRowU_;

  /// Number in each Row
  CoinIntArrayWithLength numberInRow_;

  /// Number in each Column
  CoinIntArrayWithLength numberInColumn_;

  /// Number in each Column including pivoted
  CoinIntArrayWithLength numberInColumnPlus_;

  /** First Row/Column with count of k,
      can tell which by offset - Rows then Columns */
  CoinIntArrayWithLength firstCount_;

  /// Next Row/Column with count
  CoinIntArrayWithLength nextCount_;

  /// Previous Row/Column with count
  CoinIntArrayWithLength lastCount_;

  /// Next Column in memory order
  CoinIntArrayWithLength nextColumn_;

  /// Previous Column in memory order
  CoinIntArrayWithLength lastColumn_;

  /// Next Row in memory order
  CoinIntArrayWithLength nextRow_;

  /// Previous Row in memory order
  CoinIntArrayWithLength lastRow_;

  /// Columns left to do in a single pivot
  CoinIntArrayWithLength saveColumn_;

  /// Marks rows to be updated
  CoinIntArrayWithLength markRow_;

  /// Detail in messages
  int messageLevel_;

  /// Larger of row and column size
  int biggerDimension_;

  /// Base address for U (may change)
  CoinIntArrayWithLength indexColumnU_;

  /// Pivots for L
  CoinIntArrayWithLength pivotRowL_;

  /// Inverses of pivot values
  CoinFactorizationDoubleArrayWithLength pivotRegion_;

  /// Number of slacks at beginning of U
  int numberSlacks_;

  /// Number in U
  int numberU_;

  /// Maximum space used in U
  CoinBigIndex maximumU_;

  /// Base of U is always 0
  //int baseU_;

  /// Length of U
  CoinBigIndex lengthU_;

  /// Length of area reserved for U
  CoinBigIndex lengthAreaU_;

/// Elements of U
  CoinFactorizationDoubleArrayWithLength elementU_;

/// Row indices of U
  CoinIntArrayWithLength indexRowU_;

/// Start of each column in U
  CoinBigIndexArrayWithLength startColumnU_;

/// Converts rows to columns in U 
  CoinBigIndexArrayWithLength convertRowToColumnU_;

  /// Number in L
  CoinBigIndex numberL_;

/// Base of L
  CoinBigIndex baseL_;

  /// Length of L
  CoinBigIndex lengthL_;

  /// Length of area reserved for L
  CoinBigIndex lengthAreaL_;

  /// Elements of L
  CoinFactorizationDoubleArrayWithLength elementL_;

  /// Row indices of L
  CoinIntArrayWithLength indexRowL_;

  /// Start of each column in L
  CoinBigIndexArrayWithLength startColumnL_;

  /// true if Forrest Tomlin update, false if PFI 
  bool doForrestTomlin_;

  /// Number in R
  int numberR_;

  /// Length of R stuff
  CoinBigIndex lengthR_;

  /// length of area reserved for R
  CoinBigIndex lengthAreaR_;

  /// Elements of R
  CoinFactorizationDouble *elementR_;

  /// Row indices for R
  int *indexRowR_;

  /// Start of columns for R
  CoinBigIndexArrayWithLength startColumnR_;

  /// Dense area
  double  * denseArea_;

  /// Dense area - actually used (for alignment etc)
  double  * denseAreaAddress_;

  /// Dense permutation
  int * densePermute_;

  /// Number of dense rows
  int numberDense_;

  /// Dense threshold
  int denseThreshold_;

  /// First work area
  CoinFactorizationDoubleArrayWithLength workArea_;

  /// Second work area
  CoinUnsignedIntArrayWithLength workArea2_;

  /// Number of compressions done
  CoinBigIndex numberCompressions_;

public:
  /// Below are all to collect
  mutable double ftranCountInput_;
  mutable double ftranCountAfterL_;
  mutable double ftranCountAfterR_;
  mutable double ftranCountAfterU_;
  mutable double btranCountInput_;
  mutable double btranCountAfterU_;
  mutable double btranCountAfterR_;
  mutable double btranCountAfterL_;

  /// We can roll over factorizations
  mutable int numberFtranCounts_;
  mutable int numberBtranCounts_;

  /// While these are average ratios collected over last period
  double ftranAverageAfterL_;
  double ftranAverageAfterR_;
  double ftranAverageAfterU_;
  double btranAverageAfterU_;
  double btranAverageAfterR_;
  double btranAverageAfterL_;
protected:

  /// For statistics 
#if 0
  mutable bool collectStatistics_;
#else
#define collectStatistics_ 1
#endif

  /// Below this use sparse technology - if 0 then no L row copy
  int sparseThreshold_;

  /// And one for "sparsish"
  int sparseThreshold2_;

  /// Start of each row in L
  CoinBigIndexArrayWithLength startRowL_;

  /// Index of column in row for L
  CoinIntArrayWithLength indexColumnL_;

  /// Elements in L (row copy)
  CoinFactorizationDoubleArrayWithLength elementByRowL_;

  /// Sparse regions
  mutable CoinIntArrayWithLength sparse_;
  /** L to U bias
      0 - U bias, 1 - some U bias, 2 some L bias, 3 L bias
  */
  int biasLU_;
  /** Array persistence flag
      If 0 then as now (delete/new)
      1 then only do arrays if bigger needed
      2 as 1 but give a bit extra if bigger needed
  */
  int persistenceFlag_;
#ifdef ABC_USE_COIN_FACTORIZATION
  /// Says if parallel
  int parallelMode_;
#endif
  //@}
};
// Dense coding
#ifdef COIN_HAS_LAPACK
#ifndef COIN_FACTORIZATION_DENSE_CODE
#define COIN_FACTORIZATION_DENSE_CODE 1
#endif
#endif
#ifdef COIN_FACTORIZATION_DENSE_CODE
/* Type of Fortran integer translated into C */
#ifndef ipfint
//typedef ipfint FORTRAN_INTEGER_TYPE ;
typedef int ipfint;
typedef const int cipfint;
#endif
#endif
#endif
// Extra for ugly include
#ifdef UGLY_COIN_FACTOR_CODING
#define FAC_UNSET (FAC_SET+1)
{
  goodPivot=false;
  //store pivot columns (so can easily compress)
  CoinBigIndex startColumnThis = startColumn[iPivotColumn];
  CoinBigIndex endColumn = startColumnThis + numberDoColumn + 1;
  int put = 0;
  CoinBigIndex startRowThis = startRow[iPivotRow];
  CoinBigIndex endRow = startRowThis + numberDoRow + 1;
  if ( pivotColumnPosition < 0 ) {
    for ( pivotColumnPosition = startRowThis; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
      int iColumn = indexColumn[pivotColumnPosition];
      if ( iColumn != iPivotColumn ) {
	saveColumn[put++] = iColumn;
      } else {
        break;
      }
    }
  } else {
    for (CoinBigIndex i = startRowThis ; i < pivotColumnPosition ; i++ ) {
      saveColumn[put++] = indexColumn[i];
    }
  }
  assert (pivotColumnPosition<endRow);
  assert (indexColumn[pivotColumnPosition]==iPivotColumn);
  pivotColumnPosition++;
  for ( ; pivotColumnPosition < endRow; pivotColumnPosition++ ) {
    saveColumn[put++] = indexColumn[pivotColumnPosition];
  }
  //take out this bit of indexColumn
  int next = nextRow[iPivotRow];
  int last = lastRow[iPivotRow];
  
  nextRow[last] = next;
  lastRow[next] = last;
  nextRow[iPivotRow] = numberGoodU_;	//use for permute
  lastRow[iPivotRow] = -2;
  numberInRow[iPivotRow] = 0;
  //store column in L, compress in U and take column out
  CoinBigIndex l = lengthL_;
  // **** HORRID coding coming up but a goto seems best!
  {
    if ( l + numberDoColumn > lengthAreaL_ ) {
      //need more memory
      if ((messageLevel_&4)!=0) 
	printf("more memory needed in middle of invert\n");
      goto BAD_PIVOT;
    }
    //l+=currentAreaL_->elementByColumn-elementL;
    CoinBigIndex lSave = l;
    
    CoinBigIndex * startColumnL = startColumnL_.array();
    startColumnL[numberGoodL_] = l;	//for luck and first time
    numberGoodL_++;
    startColumnL[numberGoodL_] = l + numberDoColumn;
    lengthL_ += numberDoColumn;
    if ( pivotRowPosition < 0 ) {
      for ( pivotRowPosition = startColumnThis; pivotRowPosition < endColumn; pivotRowPosition++ ) {
	int iRow = indexRow[pivotRowPosition];
	if ( iRow != iPivotRow ) {
	  indexRowL[l] = iRow;
	  elementL[l] = element[pivotRowPosition];
	  markRow[iRow] = l - lSave;
	  l++;
	  //take out of row list
	  CoinBigIndex start = startRow[iRow];
	  CoinBigIndex end = start + numberInRow[iRow];
	  CoinBigIndex where = start;
	  
	  while ( indexColumn[where] != iPivotColumn ) {
	    where++;
	  }			/* endwhile */
#if DEBUG_COIN
	  if ( where >= end ) {
	    abort (  );
	  }
#endif
	  indexColumn[where] = indexColumn[end - 1];
	  numberInRow[iRow]--;
	} else {
	  break;
	}
      }
    } else {
      CoinBigIndex i;
      
      for ( i = startColumnThis; i < pivotRowPosition; i++ ) {
	int iRow = indexRow[i];
	
	markRow[iRow] = l - lSave;
	indexRowL[l] = iRow;
	elementL[l] = element[i];
	l++;
	//take out of row list
	CoinBigIndex start = startRow[iRow];
	CoinBigIndex end = start + numberInRow[iRow];
	CoinBigIndex where = start;
	
	while ( indexColumn[where] != iPivotColumn ) {
	  where++;
	}				/* endwhile */
#if DEBUG_COIN
	if ( where >= end ) {
	  abort (  );
	}
#endif
	indexColumn[where] = indexColumn[end - 1];
	numberInRow[iRow]--;
	assert (numberInRow[iRow]>=0);
      }
    }
    assert (pivotRowPosition<endColumn);
    assert (indexRow[pivotRowPosition]==iPivotRow);
    CoinFactorizationDouble pivotElement = element[pivotRowPosition];
    CoinFactorizationDouble pivotMultiplier = 1.0 / pivotElement;
    
    pivotRegion_.array()[numberGoodU_] = pivotMultiplier;
    pivotRowPosition++;
    for ( ; pivotRowPosition < endColumn; pivotRowPosition++ ) {
      int iRow = indexRow[pivotRowPosition];
      
      markRow[iRow] = l - lSave;
      indexRowL[l] = iRow;
      elementL[l] = element[pivotRowPosition];
      l++;
      //take out of row list
      CoinBigIndex start = startRow[iRow];
      CoinBigIndex end = start + numberInRow[iRow];
      CoinBigIndex where = start;
      
      while ( indexColumn[where] != iPivotColumn ) {
	where++;
      }				/* endwhile */
#if DEBUG_COIN
      if ( where >= end ) {
	abort (  );
      }
#endif
      indexColumn[where] = indexColumn[end - 1];
      numberInRow[iRow]--;
      assert (numberInRow[iRow]>=0);
    }
    markRow[iPivotRow] = FAC_SET;
    //compress pivot column (move pivot to front including saved)
    numberInColumn[iPivotColumn] = 0;
    //use end of L for temporary space
    int *indexL = &indexRowL[lSave];
    CoinFactorizationDouble *multipliersL = &elementL[lSave];
    
    //adjust
    int j;
    
    for ( j = 0; j < numberDoColumn; j++ ) {
      multipliersL[j] *= pivotMultiplier;
    }
    //zero out fill
    CoinBigIndex iErase;
    for ( iErase = 0; iErase < increment2 * numberDoRow;
	  iErase++ ) {
      workArea2[iErase] = 0;
    }
    CoinBigIndex added = numberDoRow * numberDoColumn;
    unsigned int *temp2 = workArea2;
    int * nextColumn = nextColumn_.array();
    
    //pack down and move to work
    int jColumn;
    for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
      int iColumn = saveColumn[jColumn];
      CoinBigIndex startColumnThis = startColumn[iColumn];
      CoinBigIndex endColumn = startColumnThis + numberInColumn[iColumn];
      int iRow = indexRow[startColumnThis];
      CoinFactorizationDouble value = element[startColumnThis];
      double largest;
      CoinBigIndex put = startColumnThis;
      CoinBigIndex positionLargest = -1;
      CoinFactorizationDouble thisPivotValue = 0.0;
      
      //compress column and find largest not updated
      bool checkLargest;
      int mark = markRow[iRow];
      
      if ( mark == FAC_UNSET ) {
	largest = fabs ( value );
	positionLargest = put;
	put++;
	checkLargest = false;
      } else {
	//need to find largest
	largest = 0.0;
	checkLargest = true;
	if ( mark != FAC_SET ) {
	  //will be updated
	  workArea[mark] = value;
	  int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = mark & COINFACTORIZATION_MASK_PER_INT;
	  
	  temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	  added--;
	} else {
	  thisPivotValue = value;
	}
      }
      CoinBigIndex i;
      for ( i = startColumnThis + 1; i < endColumn; i++ ) {
	iRow = indexRow[i];
	value = element[i];
	int mark = markRow[iRow];
	
	if ( mark == FAC_UNSET ) {
	  //keep
	  indexRow[put] = iRow;
	  element[put] = value;
	  if ( checkLargest ) {
	    double absValue = fabs ( value );
	    
	    if ( absValue > largest ) {
	      largest = absValue;
	      positionLargest = put;
	    }
	  }
	  put++;
	} else if ( mark != FAC_SET ) {
	  //will be updated
	  workArea[mark] = value;
	  int word = mark >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = mark & COINFACTORIZATION_MASK_PER_INT;
	  
	  temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	  added--;
	} else {
	  thisPivotValue = value;
	}
      }
      //slot in pivot
      element[put] = element[startColumnThis];
      indexRow[put] = indexRow[startColumnThis];
      if ( positionLargest == startColumnThis ) {
	positionLargest = put;	//follow if was largest
      }
      put++;
      element[startColumnThis] = thisPivotValue;
      indexRow[startColumnThis] = iPivotRow;
      //clean up counts
      startColumnThis++;
      numberInColumn[iColumn] = put - startColumnThis;
      int * numberInColumnPlus = numberInColumnPlus_.array();
      numberInColumnPlus[iColumn]++;
      startColumn[iColumn]++;
      //how much space have we got
      int next = nextColumn[iColumn];
      CoinBigIndex space;
      
      space = startColumn[next] - put - numberInColumnPlus[next];
      //assume no zero elements
      if ( numberDoColumn > space ) {
	//getColumnSpace also moves fixed part
	if ( !getColumnSpace ( iColumn, numberDoColumn ) ) {
	  goto BAD_PIVOT;
	}
	//redo starts
	positionLargest = positionLargest + startColumn[iColumn] - startColumnThis;
	startColumnThis = startColumn[iColumn];
	put = startColumnThis + numberInColumn[iColumn];
      }
      double tolerance = zeroTolerance_;
      
      int *nextCount = nextCount_.array();
      for ( j = 0; j < numberDoColumn; j++ ) {
	value = workArea[j] - thisPivotValue * multipliersL[j];
	double absValue = fabs ( value );
	
	if ( absValue > tolerance ) {
	  workArea[j] = 0.0;
	  element[put] = value;
	  indexRow[put] = indexL[j];
	  if ( absValue > largest ) {
	    largest = absValue;
	    positionLargest = put;
	  }
	  put++;
	} else {
	  workArea[j] = 0.0;
	  added--;
	  int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	  int bit = j & COINFACTORIZATION_MASK_PER_INT;
	  
	  if ( temp2[word] & ( 1 << bit ) ) {
	    //take out of row list
	    iRow = indexL[j];
	    CoinBigIndex start = startRow[iRow];
	    CoinBigIndex end = start + numberInRow[iRow];
	    CoinBigIndex where = start;
	    
	    while ( indexColumn[where] != iColumn ) {
	      where++;
	    }			/* endwhile */
#if DEBUG_COIN
	    if ( where >= end ) {
	      abort (  );
	    }
#endif
	    indexColumn[where] = indexColumn[end - 1];
	    numberInRow[iRow]--;
	  } else {
	    //make sure won't be added
	    int word = j >> COINFACTORIZATION_SHIFT_PER_INT;
	    int bit = j & COINFACTORIZATION_MASK_PER_INT;
	    
	    temp2[word] = temp2[word] | ( 1 << bit );	//say already in counts
	  }
	}
      }
      numberInColumn[iColumn] = put - startColumnThis;
      //move largest
      if ( positionLargest >= 0 ) {
	value = element[positionLargest];
	iRow = indexRow[positionLargest];
	element[positionLargest] = element[startColumnThis];
	indexRow[positionLargest] = indexRow[startColumnThis];
	element[startColumnThis] = value;
	indexRow[startColumnThis] = iRow;
      }
      //linked list for column
      if ( nextCount[iColumn + numberRows_] != -2 ) {
	//modify linked list
	deleteLink ( iColumn + numberRows_ );
	addLink ( iColumn + numberRows_, numberInColumn[iColumn] );
      }
      temp2 += increment2;
    }
    //get space for row list
    unsigned int *putBase = workArea2;
    int bigLoops = numberDoColumn >> COINFACTORIZATION_SHIFT_PER_INT;
    int i = 0;
    
    // do linked lists and update counts
    while ( bigLoops ) {
      bigLoops--;
      int bit;
      for ( bit = 0; bit < COINFACTORIZATION_BITS_PER_INT; i++, bit++ ) {
	unsigned int *putThis = putBase;
	int iRow = indexL[i];
	
	//get space
	int number = 0;
	int jColumn;
	
	for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	  unsigned int test = *putThis;
	  
	  putThis += increment2;
	  test = 1 - ( ( test >> bit ) & 1 );
	  number += test;
	}
	int next = nextRow[iRow];
	CoinBigIndex space;
	
	space = startRow[next] - startRow[iRow];
	number += numberInRow[iRow];
	if ( space < number ) {
	  if ( !getRowSpace ( iRow, number ) ) {
	    goto BAD_PIVOT;
	  }
	}
	// now do
	putThis = putBase;
	next = nextRow[iRow];
	number = numberInRow[iRow];
	CoinBigIndex end = startRow[iRow] + number;
	int saveIndex = indexColumn[startRow[next]];
	
	//add in
	for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	  unsigned int test = *putThis;
	  
	  putThis += increment2;
	  test = 1 - ( ( test >> bit ) & 1 );
	  indexColumn[end] = saveColumn[jColumn];
	  end += test;
	}
	//put back next one in case zapped
	indexColumn[startRow[next]] = saveIndex;
	markRow[iRow] = FAC_UNSET;
	number = end - startRow[iRow];
	numberInRow[iRow] = number;
	deleteLink ( iRow );
	addLink ( iRow, number );
      }
      putBase++;
    }				/* endwhile */
    int bit;
    
    for ( bit = 0; i < numberDoColumn; i++, bit++ ) {
      unsigned int *putThis = putBase;
      int iRow = indexL[i];
      
      //get space
      int number = 0;
      int jColumn;
      
      for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	unsigned int test = *putThis;
	
	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	number += test;
      }
      int next = nextRow[iRow];
      CoinBigIndex space;
      
      space = startRow[next] - startRow[iRow];
      number += numberInRow[iRow];
      if ( space < number ) {
	if ( !getRowSpace ( iRow, number ) ) {
	  goto BAD_PIVOT;
	}
      }
      // now do
      putThis = putBase;
      next = nextRow[iRow];
      number = numberInRow[iRow];
      CoinBigIndex end = startRow[iRow] + number;
      int saveIndex;
      
      saveIndex = indexColumn[startRow[next]];
      
      //add in
      for ( jColumn = 0; jColumn < numberDoRow; jColumn++ ) {
	unsigned int test = *putThis;
	
	putThis += increment2;
	test = 1 - ( ( test >> bit ) & 1 );
	
	indexColumn[end] = saveColumn[jColumn];
	end += test;
      }
      indexColumn[startRow[next]] = saveIndex;
      markRow[iRow] = FAC_UNSET;
      number = end - startRow[iRow];
      numberInRow[iRow] = number;
      deleteLink ( iRow );
      addLink ( iRow, number );
    }
    markRow[iPivotRow] = FAC_UNSET;
    //modify linked list for pivots
    deleteLink ( iPivotRow );
    deleteLink ( iPivotColumn + numberRows_ );
    totalElements_ += added;
    goodPivot= true;
    // **** UGLY UGLY UGLY
  }
 BAD_PIVOT:

  ;
}
#undef FAC_UNSET
#endif