summaryrefslogtreecommitdiff
path: root/thirdparty/windows/include/coin/CoinDenseVector.hpp
blob: 77ff9af564cd9c2a42de99fdeafe3a1af36d82f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/* $Id: CoinDenseVector.hpp 1372 2011-01-03 23:31:00Z lou $ */
// Copyright (C) 2003, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).

#ifndef CoinDenseVector_H
#define CoinDenseVector_H

#if defined(_MSC_VER)
// Turn off compiler warning about long names
#  pragma warning(disable:4786)
#endif

#include <cassert>
#include <cstdlib>
#include <cmath>
#include "CoinHelperFunctions.hpp"

//#############################################################################
/** A function that tests the methods in the CoinDenseVector class. The
    only reason for it not to be a member method is that this way it doesn't
    have to be compiled into the library. And that's a gain, because the
    library should be compiled with optimization on, but this method should be
    compiled with debugging. */
    template <typename T> void
    CoinDenseVectorUnitTest(T dummy);

//#############################################################################
/** Dense Vector

Stores a dense (or expanded) vector of floating point values.
Type of vector elements is controlled by templating.
(Some working quantities such as accumulated sums
are explicitly declared of type double). This allows the 
components of the vector integer, single or double precision.

Here is a sample usage:
@verbatim
    const int ne = 4;
    double el[ne] = { 10., 40., 1., 50. }

    // Create vector and set its value
    CoinDenseVector<double> r(ne,el);

    // access each element
    assert( r.getElements()[0]==10. );
    assert( r.getElements()[1]==40. );
    assert( r.getElements()[2]== 1. );
    assert( r.getElements()[3]==50. );

    // Test for equality
    CoinDenseVector<double> r1;
    r1=r;

    // Add dense vectors.
    // Similarly for subtraction, multiplication,
    // and division.
    CoinDenseVector<double> add = r + r1;
    assert( add[0] == 10.+10. );
    assert( add[1] == 40.+40. );
    assert( add[2] ==  1.+ 1. );
    assert( add[3] == 50.+50. );

    assert( r.sum() == 10.+40.+1.+50. );
@endverbatim
*/
template <typename T> class CoinDenseVector {
private:
   /**@name Private member data */
   //@{
   /// Size of element vector
   int nElements_;
   ///Vector elements
   T * elements_;
   //@}
  
public:
   /**@name Get methods. */
   //@{
   /// Get the size
   inline int getNumElements() const { return nElements_; }
   inline int size() const { return nElements_; }
   /// Get element values
   inline const T * getElements() const { return elements_; }
   /// Get element values
   inline T * getElements() { return elements_; }
   //@}
 
   //-------------------------------------------------------------------
   // Set indices and elements
   //------------------------------------------------------------------- 
   /**@name Set methods */
   //@{
   /// Reset the vector (i.e. set all elemenets to zero)
   void clear();
   /** Assignment operator */
   CoinDenseVector & operator=(const CoinDenseVector &);
   /** Member of array operator */
   T & operator[](int index) const;

   /** Set vector size, and elements.
       Size is the length of the elements vector.
       The element vector is copied into this class instance's
       member data. */ 
   void setVector(int size, const T * elems);

  
   /** Elements set to have the same scalar value */
   void setConstant(int size, T elems);
  

   /** Set an existing element in the dense vector
       The first argument is the "index" into the elements() array
   */
   void setElement(int index, T element);
   /** Resize the dense vector to be the first newSize elements.
       If length is decreased, vector is truncated. If increased
       new entries, set to new default element */
   void resize(int newSize, T fill=T()); 

   /** Append a dense vector to this dense vector */
   void append(const CoinDenseVector &);
   //@}

   /**@name norms, sum and scale */
   //@{
   /// 1-norm of vector
   inline T oneNorm() const {
     T norm = 0;
     for (int i=0; i<nElements_; i++)
       norm += CoinAbs(elements_[i]);
     return norm;
   }
   /// 2-norm of vector
   inline double twoNorm() const {
     double norm = 0.;
     for (int i=0; i<nElements_; i++)
       norm += elements_[i] * elements_[i];
     // std namespace removed because it was causing a compile
     // problem with Microsoft Visual C++
     return /*std::*/sqrt(norm);
   }
   /// infinity-norm of vector
   inline T infNorm() const {
     T norm = 0;
     for (int i=0; i<nElements_; i++)
       norm = CoinMax(norm, CoinAbs(elements_[i]));
     return norm;
   }
   /// sum of vector elements
   inline T sum() const {
     T sume = 0;
     for (int i=0; i<nElements_; i++)
       sume += elements_[i];
     return sume;
   }
   /// scale vector elements
   inline void scale(T factor) {
     for (int i=0; i<nElements_; i++)
       elements_[i] *= factor;
     return;
   }
   //@}

   /**@name Arithmetic operators. */
   //@{
   /// add <code>value</code> to every entry
   void operator+=(T value);
   /// subtract <code>value</code> from every entry
   void operator-=(T value);
   /// multiply every entry by <code>value</code>
   void operator*=(T value);
   /// divide every entry by <code>value</code>
   void operator/=(T value);
   //@}

   /**@name Constructors and destructors */
   //@{
   /** Default constructor */
   CoinDenseVector();
   /** Alternate Constructors - set elements to vector of Ts */
   CoinDenseVector(int size, const T * elems);
   /** Alternate Constructors - set elements to same scalar value */
   CoinDenseVector(int size, T element=T());
   /** Copy constructors */
   CoinDenseVector(const CoinDenseVector &);

    /** Destructor */
   ~CoinDenseVector ();
   //@}
    
private:
   /**@name Private methods */
   //@{  
   /// Copy internal data
   void gutsOfSetVector(int size, const T * elems);
   /// Set all elements to a given value
   void gutsOfSetConstant(int size, T value);
   //@}
};

//#############################################################################

/**@name Arithmetic operators on dense vectors.

   <strong>NOTE</strong>: Because these methods return an object (they can't
   return a reference, though they could return a pointer...) they are
   <em>very</em> inefficient...
 */
//@{
/// Return the sum of two dense vectors
template <typename T> inline
CoinDenseVector<T> operator+(const CoinDenseVector<T>& op1,
			     const CoinDenseVector<T>& op2){
  assert(op1.size() == op2.size());
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  const T *elements2 = op2.getElements();
  T *elements3 = op3.getElements();
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] + elements2[i];
  return op3;
}

/// Return the difference of two dense vectors
template <typename T> inline
CoinDenseVector<T> operator-(const CoinDenseVector<T>& op1,
			     const CoinDenseVector<T>& op2){
  assert(op1.size() == op2.size());
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  const T *elements2 = op2.getElements();
  T *elements3 = op3.getElements();
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] - elements2[i];
  return op3;
}


/// Return the element-wise product of two dense vectors
template <typename T> inline
CoinDenseVector<T> operator*(const CoinDenseVector<T>& op1,
			  const CoinDenseVector<T>& op2){
  assert(op1.size() == op2.size());
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  const T *elements2 = op2.getElements();
  T *elements3 = op3.getElements();
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] * elements2[i];
  return op3;
}

/// Return the element-wise ratio of two dense vectors
template <typename T> inline
CoinDenseVector<T> operator/(const CoinDenseVector<T>& op1,
			  const CoinDenseVector<T>& op2){
  assert(op1.size() == op2.size());
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  const T *elements2 = op2.getElements();
  T *elements3 = op3.getElements();
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] / elements2[i];
  return op3;
}
//@}

/**@name Arithmetic operators on dense vector and a constant. 
   These functions create a dense vector as a result. That dense vector will
   have the same indices as <code>op1</code> and the specified operation is
   done entry-wise with the given value. */
//@{
/// Return the sum of a dense vector and a constant
template <typename T> inline
CoinDenseVector<T> operator+(const CoinDenseVector<T>& op1, T value){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] + dvalue;
  return op3;
}

/// Return the difference of a dense vector and a constant
template <typename T> inline
CoinDenseVector<T> operator-(const CoinDenseVector<T>& op1, T value){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] - dvalue;
  return op3;
}

/// Return the element-wise product of a dense vector and a constant
template <typename T> inline
CoinDenseVector<T> operator*(const CoinDenseVector<T>& op1, T value){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] * dvalue;
  return op3;
}

/// Return the element-wise ratio of a dense vector and a constant
template <typename T> inline
CoinDenseVector<T> operator/(const CoinDenseVector<T>& op1, T value){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] / dvalue;
  return op3;
}

/// Return the sum of a constant and a dense vector
template <typename T> inline
CoinDenseVector<T> operator+(T value, const CoinDenseVector<T>& op1){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] + dvalue;
  return op3;
}

/// Return the difference of a constant and a dense vector
template <typename T> inline
CoinDenseVector<T> operator-(T value, const CoinDenseVector<T>& op1){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = dvalue - elements1[i];
  return op3;
}

/// Return the element-wise product of a constant and a dense vector
template <typename T> inline
CoinDenseVector<T> operator*(T value, const CoinDenseVector<T>& op1){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = elements1[i] * dvalue;
  return op3;
}

/// Return the element-wise ratio of a a constant and dense vector
template <typename T> inline
CoinDenseVector<T> operator/(T value, const CoinDenseVector<T>& op1){
  int size = op1.size();
  CoinDenseVector<T> op3(size);
  const T *elements1 = op1.getElements();
  T *elements3 = op3.getElements();
  double dvalue = value;
  for(int i=0; i<size; i++)
    elements3[i] = dvalue / elements1[i];
  return op3;
}
//@}

#endif