summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/coin1/IpTNLP.hpp
blob: 998d38e8491fbaa3ddc75e25257d4ea95686b4e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright (C) 2004, 2009 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpTNLP.hpp 2212 2013-04-14 14:51:52Z stefan $
//
// Authors:  Carl Laird, Andreas Waechter     IBM    2004-08-13

#ifndef __IPTNLP_HPP__
#define __IPTNLP_HPP__

#include "IpUtils.hpp"
#include "IpReferenced.hpp"
#include "IpException.hpp"
#include "IpAlgTypes.hpp"
#include "IpReturnCodes.hpp"

#include <map>

namespace Ipopt
{
  // forward declarations
  class IpoptData;
  class IpoptCalculatedQuantities;
  class IteratesVector;

  /** Base class for all NLP's that use standard triplet matrix form
   *  and dense vectors.  This is the standard base class for all
   *  NLP's that use the standard triplet matrix form (as for Harwell
   *  routines) and dense vectors. The class TNLPAdapter then converts
   *  this interface to an interface that can be used directly by
   *  ipopt.
   *
   *  This interface presents the problem form:
   *  
   *     min f(x)
   *
   *     s.t. gL <= g(x) <= gU
   *
   *          xL <=  x   <= xU
   *
   *  In order to specify an equality constraint, set gL_i = gU_i =
   *  rhs.  The value that indicates "infinity" for the bounds
   *  (i.e. the variable or constraint has no lower bound (-infinity)
   *  or upper bound (+infinity)) is set through the option
   *  nlp_lower_bound_inf and nlp_upper_bound_inf.  To indicate that a
   *  variable has no upper or lower bound, set the bound to
   *  -ipopt_inf or +ipopt_inf respectively
   */
  class TNLP : public ReferencedObject
  {
  public:
    /** Type of the constraints*/
    enum LinearityType
    {
      LINEAR/** Constraint/Variable is linear.*/,
      NON_LINEAR/**Constraint/Varaible is non-linear.*/
    };

    /**@name Constructors/Destructors */
    //@{
    TNLP()
    {}

    /** Default destructor */
    virtual ~TNLP()
    {}
    //@}

    DECLARE_STD_EXCEPTION(INVALID_TNLP);

    /**@name methods to gather information about the NLP */
    //@{
    /** overload this method to return the number of variables
     *  and constraints, and the number of non-zeros in the jacobian and
     *  the hessian. The index_style parameter lets you specify C or Fortran
     *  style indexing for the sparse matrix iRow and jCol parameters.
     *  C_STYLE is 0-based, and FORTRAN_STYLE is 1-based.
     */
    enum IndexStyleEnum { C_STYLE=0, FORTRAN_STYLE=1 };
    virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
                              Index& nnz_h_lag, IndexStyleEnum& index_style)=0;

    typedef std::map<std::string, std::vector<std::string> > StringMetaDataMapType;
    typedef std::map<std::string, std::vector<Index> > IntegerMetaDataMapType;
    typedef std::map<std::string, std::vector<Number> > NumericMetaDataMapType;

    /** overload this method to return any meta data for
     *  the variables and the constraints */
    virtual bool get_var_con_metadata(Index n,
                                      StringMetaDataMapType& var_string_md,
                                      IntegerMetaDataMapType& var_integer_md,
                                      NumericMetaDataMapType& var_numeric_md,
                                      Index m,
                                      StringMetaDataMapType& con_string_md,
                                      IntegerMetaDataMapType& con_integer_md,
                                      NumericMetaDataMapType& con_numeric_md)

    {
      return false;
    }

    /** overload this method to return the information about the bound
     *  on the variables and constraints. The value that indicates
     *  that a bound does not exist is specified in the parameters
     *  nlp_lower_bound_inf and nlp_upper_bound_inf.  By default,
     *  nlp_lower_bound_inf is -1e19 and nlp_upper_bound_inf is
     *  1e19. (see TNLPAdapter) */
    virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
                                 Index m, Number* g_l, Number* g_u)=0;

    /** overload this method to return scaling parameters. This is
     *  only called if the options are set to retrieve user scaling.
     *  There, use_x_scaling (or use_g_scaling) should get set to true
     *  only if the variables (or constraints) are to be scaled.  This
     *  method should return true only if the scaling parameters could
     *  be provided.
     */
    virtual bool get_scaling_parameters(Number& obj_scaling,
                                        bool& use_x_scaling, Index n,
                                        Number* x_scaling,
                                        bool& use_g_scaling, Index m,
                                        Number* g_scaling)
    {
      return false;
    }

    /** overload this method to return the variables linearity
     * (TNLP::LINEAR or TNLP::NON_LINEAR). The var_types
     *  array has been allocated with length at least n. (default implementation
     *  just return false and does not fill the array).*/
    virtual bool get_variables_linearity(Index n, LinearityType* var_types)
    {
      return false;
    }

    /** overload this method to return the constraint linearity.
     *  array has been allocated with length at least n. (default implementation
     *  just return false and does not fill the array).*/
    virtual bool get_constraints_linearity(Index m, LinearityType* const_types)
    {
      return false;
    }

    /** overload this method to return the starting point. The bool
     *  variables indicate whether the algorithm wants you to
     *  initialize x, z_L/z_u, and lambda, respectively.  If, for some
     *  reason, the algorithm wants you to initialize these and you
     *  cannot, return false, which will cause Ipopt to stop.  You
     *  will have to run Ipopt with different options then.
     */
    virtual bool get_starting_point(Index n, bool init_x, Number* x,
                                    bool init_z, Number* z_L, Number* z_U,
                                    Index m, bool init_lambda,
                                    Number* lambda)=0;

    /** overload this method to provide an Ipopt iterate (already in
     *  the form Ipopt requires it internally) for a warm start.
     *  Since this is only for expert users, a default dummy
     *  implementation is provided and returns false. */
    virtual bool get_warm_start_iterate(IteratesVector& warm_start_iterate)
    {
      return false;
    }

    /** overload this method to return the value of the objective function */
    virtual bool eval_f(Index n, const Number* x, bool new_x,
                        Number& obj_value)=0;

    /** overload this method to return the vector of the gradient of
     *  the objective w.r.t. x */
    virtual bool eval_grad_f(Index n, const Number* x, bool new_x,
                             Number* grad_f)=0;

    /** overload this method to return the vector of constraint values */
    virtual bool eval_g(Index n, const Number* x, bool new_x,
                        Index m, Number* g)=0;
    /** overload this method to return the jacobian of the
     *  constraints. The vectors iRow and jCol only need to be set
     *  once. The first call is used to set the structure only (iRow
     *  and jCol will be non-NULL, and values will be NULL) For
     *  subsequent calls, iRow and jCol will be NULL. */
    virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
                            Index m, Index nele_jac, Index* iRow,
                            Index *jCol, Number* values)=0;

    /** overload this method to return the hessian of the
     *  lagrangian. The vectors iRow and jCol only need to be set once
     *  (during the first call). The first call is used to set the
     *  structure only (iRow and jCol will be non-NULL, and values
     *  will be NULL) For subsequent calls, iRow and jCol will be
     *  NULL. This matrix is symmetric - specify the lower diagonal
     *  only.  A default implementation is provided, in case the user
     *  wants to se quasi-Newton approximations to estimate the second
     *  derivatives and doesn't not neet to implement this method. */
    virtual bool eval_h(Index n, const Number* x, bool new_x,
                        Number obj_factor, Index m, const Number* lambda,
                        bool new_lambda, Index nele_hess,
                        Index* iRow, Index* jCol, Number* values)
    {
      return false;
    }
    //@}

    /** @name Solution Methods */
    //@{
    /** This method is called when the algorithm is complete so the TNLP can store/write the solution */
    virtual void finalize_solution(SolverReturn status,
                                   Index n, const Number* x, const Number* z_L, const Number* z_U,
                                   Index m, const Number* g, const Number* lambda,
                                   Number obj_value,
                                   const IpoptData* ip_data,
                                   IpoptCalculatedQuantities* ip_cq)=0;
    /** This method is called just before finalize_solution.  With
     *  this method, the algorithm returns any metadata collected
     *  during its run, including the metadata provided by the user
     *  with the above get_var_con_metadata.  Each metadata can be of
     *  type string, integer, and numeric. It can be associated to
     *  either the variables or the constraints.  The metadata that
     *  was associated with the primal variable vector is stored in
     *  var_..._md.  The metadata associated with the constraint
     *  multipliers is stored in con_..._md.  The metadata associated
     *  with the bound multipliers is stored in var_..._md, with the
     *  suffixes "_z_L", and "_z_U", denoting lower and upper
     *  bounds. */
    virtual void finalize_metadata(Index n,
                                   const StringMetaDataMapType& var_string_md,
                                   const IntegerMetaDataMapType& var_integer_md,
                                   const NumericMetaDataMapType& var_numeric_md,
                                   Index m,
                                   const StringMetaDataMapType& con_string_md,
                                   const IntegerMetaDataMapType& con_integer_md,
                                   const NumericMetaDataMapType& con_numeric_md)
    {}


    /** Intermediate Callback method for the user.  Providing dummy
     *  default implementation.  For details see IntermediateCallBack
     *  in IpNLP.hpp. */
    virtual bool intermediate_callback(AlgorithmMode mode,
                                       Index iter, Number obj_value,
                                       Number inf_pr, Number inf_du,
                                       Number mu, Number d_norm,
                                       Number regularization_size,
                                       Number alpha_du, Number alpha_pr,
                                       Index ls_trials,
                                       const IpoptData* ip_data,
                                       IpoptCalculatedQuantities* ip_cq)
    {
      return true;
    }
    //@}

    /** @name Methods for quasi-Newton approximation.  If the second
     *  derivatives are approximated by Ipopt, it is better to do this
     *  only in the space of nonlinear variables.  The following
     *  methods are call by Ipopt if the quasi-Newton approximation is
     *  selected.  If -1 is returned as number of nonlinear variables,
     *  Ipopt assumes that all variables are nonlinear.  Otherwise, it
     *  calls get_list_of_nonlinear_variables with an array into which
     *  the indices of the nonlinear variables should be written - the
     *  array has the lengths num_nonlin_vars, which is identical with
     *  the return value of get_number_of_nonlinear_variables().  It
     *  is assumed that the indices are counted starting with 1 in the
     *  FORTRAN_STYLE, and 0 for the C_STYLE. */
    //@{
    virtual Index get_number_of_nonlinear_variables()
    {
      return -1;
    }

    virtual bool get_list_of_nonlinear_variables(Index num_nonlin_vars,
        Index* pos_nonlin_vars)
    {
      return false;
    }
    //@}

  private:
    /**@name Default Compiler Generated Methods
     * (Hidden to avoid implicit creation/calling).
     * These methods are not implemented and 
     * we do not want the compiler to implement
     * them for us, so we declare them private
     * and do not define them. This ensures that
     * they will not be implicitly created/called. */
    //@{
    /** Default Constructor */
    //TNLP();

    /** Copy Constructor */
    TNLP(const TNLP&);

    /** Overloaded Equals Operator */
    void operator=(const TNLP&);
    //@}
  };

} // namespace Ipopt

#endif