summaryrefslogtreecommitdiff
path: root/thirdparty/linux/include/coin1/ClpSimplexNonlinear.hpp
blob: 6c1088bbe0b5d65ebda98c47710a3c437f0b1b11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/* $Id: ClpSimplexNonlinear.hpp 2025 2014-03-19 12:49:55Z forrest $ */
// Copyright (C) 2004, International Business Machines
// Corporation and others.  All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
/*
   Authors

   John Forrest

 */
#ifndef ClpSimplexNonlinear_H
#define ClpSimplexNonlinear_H

class ClpNonlinearInfo;
class ClpQuadraticObjective;
class ClpConstraint;

#include "ClpSimplexPrimal.hpp"

/** This solves non-linear LPs using the primal simplex method

    It inherits from ClpSimplexPrimal.  It has no data of its own and
    is never created - only cast from a ClpSimplexPrimal object at algorithm time.
    If needed create new class and pass around

*/

class ClpSimplexNonlinear : public ClpSimplexPrimal {

public:

     /**@name Description of algorithm */
     //@{
     /** Primal algorithms for reduced gradient
         At present we have two algorithms:

     */
     /// A reduced gradient method.
     int primal();
     /** Primal algorithm for quadratic
         Using a semi-trust region approach as for pooling problem
         This is in because I have it lying around
     */
     int primalSLP(int numberPasses, double deltaTolerance,
		int otherOptions=0);
     /// May use a cut approach for solving any LP
     int primalDualCuts(char * rowsIn, int startUp, int algorithm);
     /** Primal algorithm for nonlinear constraints
         Using a semi-trust region approach as for pooling problem
         This is in because I have it lying around

     */
     int primalSLP(int numberConstraints, ClpConstraint ** constraints,
                   int numberPasses, double deltaTolerance);

     /** Creates direction vector.  note longArray is long enough
         for rows and columns.  If numberNonBasic 0 then is updated
         otherwise mode is ignored and those are used.
         Norms are only for those > 1.0e3*dualTolerance
         If mode is nonzero then just largest dj */
     void directionVector (CoinIndexedVector * longArray,
                           CoinIndexedVector * spare1, CoinIndexedVector * spare2,
                           int mode,
                           double & normFlagged, double & normUnflagged,
                           int & numberNonBasic);
     /// Main part.
     int whileIterating (int & pivotMode);
     /**
         longArray has direction
         pivotMode -
               0 - use all dual infeasible variables
           1 - largest dj
           while >= 10 trying startup phase
         Returns 0 - can do normal iteration (basis change)
         1 - no basis change
         2 - if wants singleton
         3 - if time to re-factorize
         If sequenceIn_ >=0 then that will be incoming variable
     */
     int pivotColumn(CoinIndexedVector * longArray,
                     CoinIndexedVector * rowArray,
                     CoinIndexedVector * columnArray,
                     CoinIndexedVector * spare,
                     int & pivotMode,
                     double & solutionError,
                     double * array1);
     /**  Refactorizes if necessary
          Checks if finished.  Updates status.
          lastCleaned refers to iteration at which some objective/feasibility
          cleaning too place.

          type - 0 initial so set up save arrays etc
               - 1 normal -if good update save
           - 2 restoring from saved
     */
     void statusOfProblemInPrimal(int & lastCleaned, int type,
                                  ClpSimplexProgress * progress,
                                  bool doFactorization,
                                  double & bestObjectiveWhenFlagged);
     /** Do last half of an iteration.
         Return codes
         Reasons to come out normal mode
         -1 normal
         -2 factorize now - good iteration
         -3 slight inaccuracy - refactorize - iteration done
         -4 inaccuracy - refactorize - no iteration
         -5 something flagged - go round again
         +2 looks unbounded
         +3 max iterations (iteration done)

     */
     int pivotNonlinearResult();
     //@}

};
#endif