1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/* $Id: CbcFathomDynamicProgramming.hpp 1573 2011-01-05 01:12:36Z lou $ */
// Copyright (C) 2004, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#ifndef CbcFathomDynamicProgramming_H
#define CbcFathomDynamicProgramming_H
#include "CbcFathom.hpp"
//#############################################################################
/** FathomDynamicProgramming class.
The idea is that after some branching the problem will be effectively smaller than
the original problem and maybe there will be a more specialized technique which can completely
fathom this branch quickly.
This is a dynamic programming implementation which is very fast for some
specialized problems. It expects small integral rhs, an all integer problem
and positive integral coefficients. At present it can not do general set covering
problems just set partitioning. It can find multiple optima for various rhs
combinations.
The main limiting factor is size of state space. Each 1 rhs doubles the size of the problem.
2 or 3 rhs quadruples, 4,5,6,7 by 8 etc.
*/
class CbcFathomDynamicProgramming : public CbcFathom {
public:
// Default Constructor
CbcFathomDynamicProgramming ();
// Constructor with model - assumed before cuts
CbcFathomDynamicProgramming (CbcModel & model);
// Copy constructor
CbcFathomDynamicProgramming(const CbcFathomDynamicProgramming & rhs);
virtual ~CbcFathomDynamicProgramming();
/// update model (This is needed if cliques update matrix etc)
virtual void setModel(CbcModel * model);
/// Clone
virtual CbcFathom * clone() const;
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
/** returns 0 if no fathoming attempted, 1 fully fathomed ,
2 incomplete search, 3 incomplete search but treat as complete.
If solution then newSolution will not be NULL and
will be freed by CbcModel. It is expected that the solution is better
than best so far but CbcModel will double check.
If returns 3 then of course there is no guarantee of global optimum
*/
virtual int fathom(double *& newSolution);
/// Maximum size allowed
inline int maximumSize() const {
return maximumSizeAllowed_;
}
inline void setMaximumSize(int value) {
maximumSizeAllowed_ = value;
}
/// Returns type of algorithm and sets up arrays
int checkPossible(int allowableSize = 0);
// set algorithm
inline void setAlgorithm(int value) {
algorithm_ = value;
}
/** Tries a column
returns true if was used in making any changes.
*/
bool tryColumn(int numberElements, const int * rows,
const double * coefficients, double cost,
int upper = COIN_INT_MAX);
/// Returns cost array
inline const double * cost() const {
return cost_;
}
/// Returns back array
inline const int * back() const {
return back_;
}
/// Gets bit pattern for target result
inline int target() const {
return target_;
}
/// Sets bit pattern for target result
inline void setTarget(int value) {
target_ = value;
}
private:
/// Does deleteions
void gutsOfDelete();
/** Adds one attempt of one column of type 0,
returns true if was used in making any changes
*/
bool addOneColumn0(int numberElements, const int * rows,
double cost);
/** Adds one attempt of one column of type 1,
returns true if was used in making any changes.
At present the user has to call it once for each possible value
*/
bool addOneColumn1(int numberElements, const int * rows,
const int * coefficients, double cost);
/** Adds one attempt of one column of type 1,
returns true if was used in making any changes.
At present the user has to call it once for each possible value.
This version is when there are enough 1 rhs to do faster
*/
bool addOneColumn1A(int numberElements, const int * rows,
const int * coefficients, double cost);
/// Gets bit pattern from original column
int bitPattern(int numberElements, const int * rows,
const int * coefficients);
/// Gets bit pattern from original column
int bitPattern(int numberElements, const int * rows,
const double * coefficients);
/// Fills in original column (dense) from bit pattern - returning number nonzero
int decodeBitPattern(int bitPattern, int * values, int numberRows);
protected:
/// Size of states (power of 2 unless just one constraint)
int size_;
/** Type - 0 coefficients and rhs all 1,
1 - coefficients > 1 or rhs > 1
*/
int type_;
/// Space for states
double * cost_;
/// Which state produced this cheapest one
int * back_;
/// Some rows may be satisified so we need a lookup
int * lookup_;
/// Space for sorted indices
int * indices_;
/// Number of active rows
int numberActive_;
/// Maximum size allowed
int maximumSizeAllowed_;
/// Start bit for each active row
int * startBit_;
/// Number bits for each active row
int * numberBits_;
/// Effective rhs
int * rhs_;
/// Space for sorted coefficients
int * coefficients_;
/// Target pattern
int target_;
/// Number of Non 1 rhs
int numberNonOne_;
/// Current bit pattern
int bitPattern_;
/// Current algorithm
int algorithm_;
private:
/// Illegal Assignment operator
CbcFathomDynamicProgramming & operator=(const CbcFathomDynamicProgramming& rhs);
};
#endif
|