blob: caa178e1954a6477407ec13b0bb39a53cab2e15e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
// (C) Copyright International Business Machines Corporation 2007
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// Authors :
// Pierre Bonami, International Business Machines Corporation
//
// Date : 04/19/2007
#ifndef BonCbc_H
#define BonCbc_H
//#include "BonBabSetupBase.hpp"
#include "CbcModel.hpp"
namespace Bonmin
{
class BabSetupBase;
class Bab
{
public:
/** Integer optimization return codes.*/
enum MipStatuses {FeasibleOptimal /** Optimum solution has been found and its optimality proved.*/,
ProvenInfeasible /** Problem has been proven to be infeasible.*/,
Feasible /** An integer solution to the problem has been found.*/,
UnboundedOrInfeasible /*Coninuous relaxation is unbounded.*/,
NoSolutionKnown/** No feasible solution to the problem is known*/,
NumMipStats};
/** Constructor.*/
Bab();
/** destructor.*/
virtual ~Bab();
/** Perform a branch-and-bound using given setup.*/
virtual void branchAndBound(BabSetupBase & s);
/**operator() performs the branchAndBound*/
virtual void operator()(BabSetupBase & s);
/**operator() performs the branchAndBound*/
virtual void operator()(BabSetupBase * s){
operator()(*s);}
/** get the best solution known to the problem (is optimal if MipStatus is FeasibleOptimal).
if no solution is known returns NULL.*/
const double * bestSolution() const
{
return bestSolution_;
}
/** return objective value of the bestSolution */
double bestObj() const
{
return bestObj_;
}
/** return Mip Status */
MipStatuses mipStatus() const
{
return mipStatus_;
}
/** return the best known lower bound on the objective value*/
double bestBound();
/** return the total number of nodes explored.*/
int numNodes() const
{
return numNodes_;
}
/** return the total number of iterations in the last mip solved.*/
int iterationCount()
{
return mipIterationCount_;
}
/** returns the value of the continuous relaxation. */
double continuousRelaxation()
{
return continuousRelaxation_;
}
/** virtual callback function to eventually modify objects for integer variable
(replace with user set). This is called after CbcModel::findIntegers */
virtual void replaceIntegers(OsiObject ** objects, int numberObjects)
{}
/** Get cbc model used to solve. */
const CbcModel& model() const
{
return model_;
}
/** Get cbc model used to solve as non-const, in case we want to
change options before things happen */
CbcModel& model()
{
return model_;
}
protected:
/** Stores the solution of MIP. */
double * bestSolution_;
/** Status of the mip solved*/
MipStatuses mipStatus_;
/** objValue of MIP */
double bestObj_;
/** best known (lower) bound.*/
double bestBound_;
/** Continuous relaxation of the problem */
double continuousRelaxation_;
/** Number of nodes enumerated.*/
int numNodes_;
/** get total number of iterations in last mip solved.*/
int mipIterationCount_;
/** CbcModel used to solve problem.*/
CbcModel model_;
/** Message handler for CbcModel. */
CoinMessageHandler * modelHandler_;
/** \brief OsiObjects of the model.
* this is not null if and only if there are some non-simple-integer branching objects such as SOS constraints.
* It is up to Bab to pass them over to appropriate components of the algorithm. */
OsiObject** objects_;
/** number of objects.*/
int nObjects_;
};
}
#endif
|