1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: R.Vidyadhar & Vignesh Kannan
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
#include "sci_iofunc.hpp"
#include "IpIpoptApplication.hpp"
#include "minbndNLP.hpp"
#include <IpSolveStatistics.hpp>
extern "C"
{
#include <api_scilab.h>
#include <Scierror.h>
#include <BOOL.h>
#include <localization.h>
#include <sciprint.h>
#include <iostream>
using namespace std;
int sci_solveminbndp(char *fname)
{
using namespace Ipopt;
CheckInputArgument(pvApiCtx, 5, 5);
CheckOutputArgument(pvApiCtx, 9, 9);
// Error management variable
SciErr sciErr;
//Function pointers,lower bound and upper bound pointers
int* funptr=NULL;
int* gradhesptr=NULL;
double* varLB=NULL;
double* varUB=NULL;
// Input arguments
double *cpu_time=NULL,*max_iter=NULL,*tol_val=NULL;
static unsigned int nVars = 0,nCons = 0;
unsigned int temp1 = 0,temp2 = 0, iret = 0;
int x1_rows, x1_cols, x2_rows, x2_cols;
// Output arguments
double ObjVal=0,iteration=0,cpuTime=0,fobj_eval=0;
const double *fX = NULL,*fZl=NULL;
const double *fZu=NULL;
double dual_inf, constr_viol, complementarity, kkt_error;
int rstatus = 0;
int int_fobj_eval, int_constr_eval, int_fobj_grad_eval, int_constr_jac_eval, int_hess_eval;
////////// Manage the input argument //////////
//Objective Function
if(getFunctionFromScilab(1,&funptr))
{
return 1;
}
//Function for gradient and hessian
if(getFunctionFromScilab(2,&gradhesptr))
{
return 1;
}
//x1(lower bound) matrix from scilab
if(getDoubleMatrixFromScilab(3, &x1_rows, &x1_cols, &varLB))
{
return 1;
}
//x2(upper bound) matrix from scilab
if(getDoubleMatrixFromScilab(4, &x2_rows, &x2_cols, &varUB))
{
return 1;
}
//Getting number of iterations
if(getFixedSizeDoubleMatrixInList(5,2,temp1,temp2,&max_iter))
{
return 1;
}
//Getting Cpu Time
if(getFixedSizeDoubleMatrixInList(5,4,temp1,temp2,&cpu_time))
{
return 1;
}
//Getting Tolerance Value
if(getFixedSizeDoubleMatrixInList(5,6,temp1,temp2,&tol_val))
{
return 1;
}
//Initialization of parameters
nVars=x1_rows;
nCons=0;
// Starting Ipopt
SmartPtr<minbndNLP> Prob = new minbndNLP(nVars,nCons,varLB,varUB);
SmartPtr<IpoptApplication> app = IpoptApplicationFactory();
////////// Managing the parameters //////////
app->Options()->SetNumericValue("tol", *tol_val);
app->Options()->SetIntegerValue("max_iter", (int)*max_iter);
app->Options()->SetNumericValue("max_cpu_time", *cpu_time);
///////// Initialize the IpoptApplication and process the options /////////
ApplicationReturnStatus status;
status = app->Initialize();
if (status != Solve_Succeeded) {
sciprint("\n*** Error during initialization!\n");
return (int) status;
}
// Ask Ipopt to solve the problem
status = app->OptimizeTNLP((SmartPtr<TNLP>&)Prob);
//Get the solve statistics
cpuTime = app->Statistics()->TotalCPUTime();
app->Statistics()->NumberOfEvaluations(int_fobj_eval, int_constr_eval, int_fobj_grad_eval, int_constr_jac_eval, int_hess_eval);
app->Statistics()->Infeasibilities(dual_inf, constr_viol, complementarity, kkt_error);
rstatus = Prob->returnStatus();
////////// Manage the output argument //////////
fX = Prob->getX();
ObjVal = Prob->getObjVal();
iteration = (double)app->Statistics()->IterationCount();
fobj_eval=(double)int_fobj_eval;
fZl = Prob->getZl();
fZu = Prob->getZu();
if (returnDoubleMatrixToScilab(1, 1, nVars, fX))
{
return 1;
}
if (returnDoubleMatrixToScilab(2, 1, 1, &ObjVal))
{
return 1;
}
if (returnIntegerMatrixToScilab(3, 1, 1, &rstatus))
{
return 1;
}
if (returnDoubleMatrixToScilab(4, 1, 1, &iteration))
{
return 1;
}
if (returnDoubleMatrixToScilab(5, 1, 1, &cpuTime))
{
return 1;
}
if (returnDoubleMatrixToScilab(6, 1, 1, &fobj_eval))
{
return 1;
}
if (returnDoubleMatrixToScilab(7, 1, 1, &dual_inf))
{
return 1;
}
if (returnDoubleMatrixToScilab(8, 1, nVars, fZl))
{
return 1;
}
if (returnDoubleMatrixToScilab(9, 1, nVars, fZu))
{
return 1;
}
return 0;
}
}
|