1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/*
* Quadratic Programming Toolbox for Scilab using IPOPT library
* Authors :
Sai Kiran
Keyur Joshi
Iswarya
Harpreet Singh
*/
#include "sci_iofunc.hpp"
#include "IpIpoptApplication.hpp"
#include "QuadNLP.hpp"
extern "C"{
#include <api_scilab.h>
#include <Scierror.h>
#include <BOOL.h>
#include <localization.h>
#include <sciprint.h>
int sci_solveqp(char *fname)
{
using namespace Ipopt;
CheckInputArgument(pvApiCtx, 11, 11); // We need total 10 input arguments.
CheckOutputArgument(pvApiCtx, 7, 7);
// Error management variable
SciErr sciErr;
// Input arguments
double *QItems=NULL,*PItems=NULL,*ConItems=NULL,*conUB=NULL,*conLB=NULL;
double *cpu_time=NULL,*max_iter=NULL,*varUB=NULL,*varLB=NULL,*init_guess=NULL;
static unsigned int nVars = 0,nCons = 0;
unsigned int temp1 = 0,temp2 = 0, iret = 0;
// Output arguments
double *fX = NULL, ObjVal=0,iteration=0, *Zl=NULL, *Zu=NULL, *Lambda=NULL;
int rstatus = 0;
////////// Manage the input argument //////////
//Number of Variables
if(getIntFromScilab(1,&nVars))
{
return 1;
}
//Number of Constraints
if (getIntFromScilab(2,&nCons))
{
return 1;
}
//Q matrix from scilab
temp1 = nVars;
temp2 = nCons;
if (getFixedSizeDoubleMatrixFromScilab(3,temp1,temp1,&QItems))
{
return 1;
}
//P matrix from scilab
temp1 = 1;
temp2 = nVars;
if (getFixedSizeDoubleMatrixFromScilab(4,temp1,temp2,&PItems))
{
return 1;
}
if (nCons!=0)
{
//conMatrix matrix from scilab
temp1 = nCons;
temp2 = nVars;
if (getFixedSizeDoubleMatrixFromScilab(5,temp1,temp2,&ConItems))
{
return 1;
}
//conLB matrix from scilab
temp1 = 1;
temp2 = nCons;
if (getFixedSizeDoubleMatrixFromScilab(6,temp1,temp2,&conLB))
{
return 1;
}
//conUB matrix from scilab
if (getFixedSizeDoubleMatrixFromScilab(7,temp1,temp2,&conUB))
{
return 1;
}
}
//varLB matrix from scilab
temp1 = 1;
temp2 = nVars;
if (getFixedSizeDoubleMatrixFromScilab(8,temp1,temp2,&varLB))
{
return 1;
}
//varUB matrix from scilab
if (getFixedSizeDoubleMatrixFromScilab(9,temp1,temp2,&varUB))
{
return 1;
}
//Initial Value of variables from scilab
if (getFixedSizeDoubleMatrixFromScilab(10,temp1,temp2,&init_guess))
{
return 1;
}
//Getting the parameters
temp1 = 1;
temp2 = 1;
//Getting maximum iteration
if (getFixedSizeDoubleMatrixInList(11,2,temp1,temp2,&max_iter))
{
return 1;
}
//Getting Cpu Time
if (getFixedSizeDoubleMatrixInList(11,4,temp1,temp2,&cpu_time))
{
return 1;
}
// Starting Ipopt
SmartPtr<QuadNLP> Prob =
new QuadNLP(nVars,nCons,QItems,PItems,ConItems,conUB,conLB,varUB,varLB,init_guess);
SmartPtr<IpoptApplication> app = IpoptApplicationFactory();
app->RethrowNonIpoptException(true);
////////// Managing the parameters //////////
app->Options()->SetNumericValue("tol", 1e-7);
app->Options()->SetIntegerValue("max_iter", (int)*max_iter);
app->Options()->SetNumericValue("max_cpu_time", *cpu_time);
app->Options()->SetStringValue("mu_strategy", "adaptive");
// Indicates whether all equality constraints are linear
app->Options()->SetStringValue("jac_c_constant", "yes");
// Indicates whether all inequality constraints are linear
app->Options()->SetStringValue("jac_d_constant", "yes");
// Indicates whether the problem is a quadratic problem
app->Options()->SetStringValue("hessian_constant", "yes");
///////// Initialize the IpoptApplication and process the options /////////
ApplicationReturnStatus status;
status = app->Initialize();
if (status != Solve_Succeeded) {
sciprint("\n*** Error during initialization!\n");
return (int) status;
}
// Ask Ipopt to solve the problem
status = app->OptimizeTNLP(Prob);
rstatus = Prob->returnStatus();
////////// Manage the output argument //////////
if (rstatus == 0 | rstatus == 1 | rstatus == 2){
fX = Prob->getX();
ObjVal = Prob->getObjVal();
iteration = Prob->iterCount();
if (returnDoubleMatrixToScilab(1, 1, nVars, fX))
{
return 1;
}
if (returnDoubleMatrixToScilab(2, 1, 1, &ObjVal))
{
return 1;
}
if (returnIntegerMatrixToScilab(3, 1, 1, &rstatus))
{
return 1;
}
if (returnDoubleMatrixToScilab(4, 1, 1, &iteration))
{
return 1;
}
}
else
{
if (returnDoubleMatrixToScilab(1, 0, 0, fX))
{
return 1;
}
if (returnDoubleMatrixToScilab(2, 1, 1, &ObjVal))
{
return 1;
}
if (returnIntegerMatrixToScilab(3, 1, 1, &rstatus))
{
return 1;
}
if (returnDoubleMatrixToScilab(4, 1, 1, &iteration))
{
return 1;
}
}
if(rstatus == 0){
Zl = Prob->getZl();
Zu = Prob->getZu();
Lambda = Prob->getLambda();
if (returnDoubleMatrixToScilab(5, 1, nVars, Zl))
{
return 1;
}
if (returnDoubleMatrixToScilab(6, 1, nVars, Zu))
{
return 1;
}
if (returnDoubleMatrixToScilab(7, 1, 1, Lambda))
{
return 1;
}
}
else{
if (returnDoubleMatrixToScilab(5, 0, 0, Zl))
{
return 1;
}
if (returnDoubleMatrixToScilab(6, 0, 0, Zu))
{
return 1;
}
if (returnDoubleMatrixToScilab(7, 0, 0, Lambda))
{
return 1;
}
}
// As the SmartPtrs go out of scope, the reference count
// will be decremented and the objects will automatically
// be deleted.
return 0;
}
}
|