summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/sci_QuadTMINLP.cpp
blob: a424b4791c7b2c89a440ae995ea3f89b11c12879 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright (C) 2016 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh, Pranav Deshpande and Akshay Miterani
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in

#include "QuadTMINLP.hpp"
#include "IpIpoptData.hpp"

extern "C"{
#include <sciprint.h>
}

// Go to http://coin-or.org/Ipopt and http://coin-or.org/Bonmin for the details of the below methods

// Set the type of every variable - CONTINUOUS or INTEGER
bool QuadTMINLP::get_variables_types(Index n, VariableType* var_types)
{
  n = numVars_;
  for(int i=0; i < n; i++)
    var_types[i] = CONTINUOUS;
  for(int i=0 ; i < intconSize_ ; ++i)
  	var_types[(int)(intcon_[i]-1)] = INTEGER;
  return true;
}

// The linearity of the variables - LINEAR or NON_LINEAR
bool QuadTMINLP::get_variables_linearity(Index n, Ipopt::TNLP::LinearityType* var_types)
{
	/*
	n = numVars_;
	for(int i = 0; i < n; i++)
		var_types[i] = Ipopt::TNLP::LINEAR;
  */
  return true;
}

// The linearity of the constraints - LINEAR or NON_LINEAR
bool QuadTMINLP::get_constraints_linearity(Index m, Ipopt::TNLP::LinearityType* const_types)
{
  m = numCons_;
  for(int i = 0; i < m; i++)
    const_types[i] = Ipopt::TNLP::LINEAR;
  return true;
}

// Get MINLP info such as the number of variables,constraints,no.of elements in jacobian and hessian to allocate memory
bool QuadTMINLP::get_nlp_info(Index& n, Index&m, Index& nnz_jac_g, Index& nnz_h_lag, TNLP::IndexStyleEnum& index_style)
{
  n=numVars_; // Number of variables
	m=numCons_; // Number of constraints
	nnz_jac_g = n*m; // No. of elements in Jacobian of constraints 
	nnz_h_lag = (n*(n+1))/2; // No. of elements in lower traingle of Hessian of the Lagrangian.
	index_style=TNLP::C_STYLE; // Index style of matrices
	return true;
}

// Get the variables and constraints bound info
bool QuadTMINLP::get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u)
{
  unsigned int i;
	for(i=0;i<n;i++){
		x_l[i]=varLB_[i];
		x_u[i]=varUB_[i];
		}

	for(i=0;i<m;i++){
		g_l[i]=conLB_[i];
		g_u[i]=conUB_[i];
		}
	return true;
}

// This method sets initial values for all the required vectors. We take 0 by default. 
bool QuadTMINLP::get_starting_point(Index n, bool init_x, Number* x,
                             bool init_z, Number* z_L, Number* z_U,
                             Index m, bool init_lambda,
                             Number* lambda)
{
  if (init_x == true){ //we need to set initial values for vector x
		for (Index var=0;var<n;var++)
			x[var]=varGuess_[var];//initialize with 0 or we can change.
		}

	if (init_z == true){ //we need to provide initial values for vector bound multipliers
		for (Index var=0;var<n;++var){
			z_L[var]=0.0; //initialize with 0 or we can change.
			z_U[var]=0.0;//initialize with 0 or we can change.
			}
		}
	
	if (init_lambda == true){ //we need to provide initial values for lambda values.
		for (Index var=0;var<m;++var){
			lambda[var]=0.0; //initialize with 0 or we can change.
			}
		}

	return true;
}

// Evaluate the objective function at a point
bool QuadTMINLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)
{
  unsigned int i,j;
	obj_value=0;
	for (i=0;i<n;i++){
		for (j=0;j<n;j++){
			obj_value+=0.5*x[i]*x[j]*qMatrix_[n*i+j];		
			}
  	obj_value+=x[i]*lMatrix_[i];
		}
	return true;
}

// Get the value of gradient of objective function at vector x.
bool QuadTMINLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
{
  unsigned int i,j;
	for(i=0;i<n;i++)
	{
		grad_f[i]=lMatrix_[i];
		for(j=0;j<n;j++)
			{
				grad_f[i]+=(qMatrix_[n*i+j])*x[j];
			}
	}
	return true;
}

// Get the values of constraints at vector x.
bool QuadTMINLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)
{
  unsigned int i,j;
	for(i=0;i<m;i++)
	{
		g[i]=0;
		for(j=0;j<n;j++)
		{
			g[i]+=x[j]*conMatrix_[i+j*m];	
		}
	}
	return true;
}

// The Jacobian Matrix
bool QuadTMINLP::eval_jac_g(Index n, const Number* x, bool new_x,
                     Index m, Index nnz_jac, Index* iRow, Index *jCol,
                     Number* values)
{
	//It asks for the structure of the jacobian.
	if (values==NULL){ //Structure of jacobian (full structure)
		int index=0;
		for (int var=0;var<m;++var)//no. of constraints
			for (int flag=0;flag<n;++flag){//no. of variables
				iRow[index]=var;
				jCol[index]=flag;
				index++;
				}
		}
	//It asks for values
	else { 
		int index=0;
		for (int var=0;var<m;++var)
			for (int flag=0;flag<n;++flag)
				values[index++]=conMatrix_[var+flag*m];
		}
	return true;
}

/*
The structure of the Hessain matrix and the values
*/
bool QuadTMINLP::eval_h(Index n, const Number* x, bool new_x,
                 Number obj_factor, Index m, const Number* lambda,
                 bool new_lambda, Index nele_hess, Index* iRow,
                 Index* jCol, Number* values)
{
	if (values==NULL){
		Index idx=0;
		for (Index row = 0; row < n; row++) {
			for (Index col = 0; col <= row; col++) {
				iRow[idx] = row;
				jCol[idx] = col;
				idx++;
		  		}
			}
		}
	else {
		Index index=0;
		for (Index row=0;row < n;++row){
			for (Index col=0; col <= row; ++col){
				values[index++]=obj_factor*(qMatrix_[n*row+col]);
				}
			}
		}
	return true;
}

void QuadTMINLP::finalize_solution(TMINLP::SolverReturn status, Index n, const Number* x,Number obj_value)
{
	
	finalX_ = (double*)malloc(sizeof(double) * numVars_ * 1);
	for (Index i=0; i<n; i++) 
	{
    		 finalX_[i] = x[i];
	}

	finalObjVal_ = obj_value;
	status_ = status;
}

const double * QuadTMINLP::getX()
{	
	return finalX_;
}

double QuadTMINLP::getObjVal()
{	
	return finalObjVal_;
}

int QuadTMINLP::returnStatus()
{	
	return status_;
}