1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
/*
* Quadratic Programming Toolbox for Scilab using IPOPT library
* Authors :
Sai Kiran
Keyur Joshi
Iswarya
*/
#include "QuadNLP.hpp"
#include "IpIpoptData.hpp"
extern "C"{
#include <api_scilab.h>
#include <Scierror.h>
#include <BOOL.h>
#include <localization.h>
#include <sciprint.h>
double x_static,i, *op_obj_x = NULL,*op_obj_value = NULL;
using namespace Ipopt;
QuadNLP::~QuadNLP()
{
free(finalX_);
free(finalZl_);
free(finalZu_);}
//get NLP info such as number of variables,constraints,no.of elements in jacobian and hessian to allocate memory
bool QuadNLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g, Index& nnz_h_lag, IndexStyleEnum& index_style){
n=numVars_; // Number of variables
m=numConstr_; // Number of constraints
nnz_jac_g = n*m; // No. of elements in Jacobian of constraints
nnz_h_lag = n*(n+1)/2; // No. of elements in lower traingle of Hessian of the Lagrangian.
index_style=C_STYLE; // Index style of matrices
return true;
}
//get variable and constraint bound info
bool QuadNLP::get_bounds_info(Index n, Number* x_l, Number* x_u, Index m, Number* g_l, Number* g_u){
unsigned int i;
for(i=0;i<n;i++){
x_l[i]=varLB_[i];
x_u[i]=varUB_[i];
}
for(i=0;i<m;i++){
g_l[i]=conLB_[i];
g_u[i]=conUB_[i];
}
return true;
}
//get value of objective function at vector x
bool QuadNLP::eval_f(Index n, const Number* x, bool new_x, Number& obj_value){
unsigned int i,j;
obj_value=0;
for (i=0;i<=n;i++){
for (j=0;j<=n;j++){
obj_value+=0.5*x[i]*x[j]*qMatrix_[n*i+j];
}
obj_value+=x[i]*lMatrix_[i];
}
return true;
}
//get value of gradient of objective function at vector x.
bool QuadNLP::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f){
unsigned int i,j;
for(i=0;i<n;i++)
{
grad_f[i]=lMatrix_[i];
for(j=0;j<n;j++)
{
grad_f[i]+=(qMatrix_[n*i+j])*x[j];
}
}
return true;
}
//Get the values of constraints at vector x.
bool QuadNLP::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g){
unsigned int i,j;
for(i=0;i<m;i++)
{
g[i]=0;
for(j=0;j<n;j++)
{
g[i]+=x[j]*conMatrix_[i+j*m];
}
}
return true;
}
// This method sets initial values for required vectors . For now we are assuming 0 to all values.
bool QuadNLP::get_starting_point(Index n, bool init_x, Number* x,
bool init_z, Number* z_L, Number* z_U,
Index m, bool init_lambda,
Number* lambda){
if (init_x == true){ //we need to set initial values for vector x
for (Index var=0;var<n;var++)
x[var]=varGuess_[var];//initialize with 0 or we can change.
}
if (init_z == true){ //we need to provide initial values for vector bound multipliers
for (Index var=0;var<n;++var){
z_L[var]=0.0; //initialize with 0 or we can change.
z_U[var]=0.0;//initialize with 0 or we can change.
}
}
if (init_lambda == true){ //we need to provide initial values for lambda values.
for (Index var=0;var<m;++var){
lambda[var]=0.0; //initialize with 0 or we can change.
}
}
return true;
}
/* Return either the sparsity structure of the Jacobian of the constraints, or the values for the Jacobian of the constraints at the point x.
*/
bool QuadNLP::eval_jac_g(Index n, const Number* x, bool new_x,
Index m, Index nele_jac, Index* iRow, Index *jCol,
Number* values){
//It asked for structure of jacobian.
if (values==NULL){ //Structure of jacobian (full structure)
int index=0;
for (int var=0;var<m;++var)//no. of constraints
for (int flag=0;flag<n;++flag){//no. of variables
iRow[index]=var;
jCol[index]=flag;
index++;
}
}
//It asked for values
else {
int index=0;
for (int var=0;var<m;++var)
for (int flag=0;flag<n;++flag)
values[index++]=conMatrix_[var+flag*m];
}
return true;
}
/*
* Return either the sparsity structure of the Hessian of the Lagrangian,
* or the values of the Hessian of the Lagrangian for the given values for
* x,lambda,obj_factor.
*/
bool QuadNLP::eval_h(Index n, const Number* x, bool new_x,
Number obj_factor, Index m, const Number* lambda,
bool new_lambda, Index nele_hess, Index* iRow,
Index* jCol, Number* values){
if (values==NULL){
Index idx=0;
for (Index row = 0; row < n; row++) {
for (Index col = 0; col <= row; col++) {
iRow[idx] = row;
jCol[idx] = col;
idx++;
}
}
}
else {
Index index=0;
for (Index row=0;row < n;++row){
for (Index col=0; col <= row; ++col){
values[index++]=obj_factor*(qMatrix_[n*row+col]);
}
}
}
return true;
}
void QuadNLP::finalize_solution(SolverReturn status,
Index n, const Number* x, const Number* z_L, const Number* z_U,
Index m, const Number* g, const Number* lambda, Number obj_value,
const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq){
finalX_ = (double*)malloc(sizeof(double) * numVars_ * 1);
for (Index i=0; i<n; i++)
{
finalX_[i] = x[i];
}
finalZl_ = (double*)malloc(sizeof(double) * numVars_ * 1);
for (Index i=0; i<n; i++)
{
finalZl_[i] = z_L[i];
}
finalZu_ = (double*)malloc(sizeof(double) * numVars_ * 1);
for (Index i=0; i<n; i++)
{
finalZu_[i] = z_U[i];
}
finalLambda_ = (double*)malloc(sizeof(double) * numConstr_ * 1);
for (Index i=0; i<m; i++)
{
finalLambda_[i] = lambda[i];
}
finalObjVal_ = obj_value;
status_ = status;
if (status_ == 0 | status_ == 1 | status_ == 2){
iter_ = ip_data->iter_count();
}
}
const double * QuadNLP::getX()
{
return finalX_;
}
const double * QuadNLP::getZl()
{
return finalZl_;
}
const double * QuadNLP::getZu()
{
return finalZu_;
}
const double * QuadNLP::getLambda()
{
return finalLambda_;
}
double QuadNLP::getObjVal()
{
return finalObjVal_;
}
double QuadNLP::iterCount()
{
return (double)iter_;
}
int QuadNLP::returnStatus()
{
return status_;
}
}
|