1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: harpreet.mertia@gmail.com
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
// Solves a linear quadratic problem.
//
// Calling Sequence
// x = qpipoptmat(H,f)
// x = qpipoptmat(H,f,A,b)
// x = qpipoptmat(H,f,A,b,Aeq,beq)
// x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
// x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
// x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
// [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
//
// Parameters
// H : a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
// f : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
// A : a m x n matrix of doubles, represents the linear coefficients in the inequality constraints
// b : a column vector of doubles, represents the linear coefficients in the inequality constraints
// Aeq : a meq x n matrix of doubles, represents the linear coefficients in the equality constraints
// beq : a vector of doubles, represents the linear coefficients in the equality constraints
// LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
// UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
// x0 : a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
// param : a list containing the the parameters to be set.
// xopt : a nx1 matrix of doubles, the computed solution of the optimization problem.
// fopt : a 1x1 matrix of doubles, the function value at x.
// exitflag : Integer identifying the reason the algorithm terminated.
// output : Structure containing information about the optimization.
// lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
//
// Description
// Search the minimum of a constrained linear quadratic optimization problem specified by :
// find the minimum of f(x) such that
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2*x'*H*x + f'*x \\
// & \text{subject to} & A.x \leq b \\
// & & Aeq.x \leq beq \\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
//
// We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by Andreas Wächter and Carl Laird.
//
// Examples
// //Find x in R^6 such that:
//
// Aeq= [1,-1,1,0,3,1;
// -1,0,-3,-4,5,6;
// 2,5,3,0,1,0];
// beq=[1; 2; 3];
// A= [0,1,0,1,2,-1;
// -1,0,2,1,1,0];
// b = [-1; 2.5];
// lb=[-1000; -10000; 0; -1000; -1000; -1000];
// ub=[10000; 100; 1.5; 100; 100; 1000];
// x0 = repmat(0,6,1);
// param = list("MaxIter", 300, "CpuTime", 100);
// //and minimize 0.5*x'*Q*x + p'*x with
// f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
// [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
// clear H f A b Aeq beq lb ub;
//
// Examples
// //Find the value of x that minimize following function
// // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
// // Subject to:
// // x1 + x2 ≤ 2
// // –x1 + 2x2 ≤ 2
// // 2x1 + x2 ≤ 3
// // 0 ≤ x1, 0 ≤ x2.
// H = [1 -1; -1 2];
// f = [-2; -6];
// A = [1 1; -1 2; 2 1];
// b = [2; 2; 3];
// lb = [0; 0];
// ub = [%inf; %inf];
// [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
//
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
//To check the number of argument given by user
if ( rhs < 2 | rhs == 3 | rhs == 5 | rhs == 7 | rhs > 10 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 4 6 8 9 10]"), "qpipoptmat", rhs);
error(errmsg)
end
H = varargin(1);
f = varargin(2);
nbVar = size(H,1);
if ( rhs<2 ) then
A = []
b = []
else
A = varargin(3);
b = varargin(4);
end
if ( rhs<4 ) then
Aeq = []
beq = []
else
Aeq = varargin(5);
beq = varargin(6);
end
if ( rhs<6 ) then
LB = repmat(-%inf,nbVar,1);
UB = repmat(%inf,nbVar,1);
else
LB = varargin(7);
UB = varargin(8);
end
if ( rhs<9 | size(varargin(9)) ==0 ) then
x0 = repmat(0,nbVar,1)
else
x0 = varargin(9);
end
if ( rhs<10 ) then
param = list();
else
param =varargin(10);
end
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipoptmat");
error(errmsg);
end
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "qpipoptmat");
error(errmsg);
end
options = list(..
"MaxIter" , [3000], ...
"CpuTime" , [600] ...
);
for i = 1:(size(param))/2
select param(2*i-1)
case "MaxIter" then
options(2*i-1) = param(2*i);
case "CpuTime" then
options(2*i-1) = param(2*i);
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "qpipoptmat", param(2*i-1));
error(errmsg)
end
end
nbConInEq = size(A,1);
nbConEq = size(Aeq,1);
//Checking the H matrix which needs to be a symmetric matrix
if ( H~=H') then
errmsg = msprintf(gettext("%s: H is not a symmetric matrix"), "qpipoptmat");
error(errmsg);
end
//Check the size of H which should equal to the number of variable
if ( size(H) ~= [nbVar nbVar]) then
errmsg = msprintf(gettext("%s: The Size of H is not equal to the number of variables"), "qpipoptmat");
error(errmsg);
end
//Check the size of f which should equal to the number of variable
if ( size(f,1) ~= [nbVar]) then
errmsg = msprintf(gettext("%s: The Size of f is not equal to the number of variables"), "qpipoptmat");
error(errmsg);
end
//Check the size of inequality constraint which should be equal to the number of variables
if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
errmsg = msprintf(gettext("%s: The size of inequality constraints is not equal to the number of variables"), "qpipoptmat");
error(errmsg);
end
//Check the size of equality constraint which should be equal to the number of variables
if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
errmsg = msprintf(gettext("%s: The size of equality constraints is not equal to the number of variables"), "qpipoptmat");
error(errmsg);
end
//Check the size of Lower Bound which should be equal to the number of variables
if ( size(LB,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipoptmat");
error(errmsg);
end
//Check the size of Upper Bound which should equal to the number of variables
if ( size(UB,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipoptmat");
error(errmsg);
end
//Check the size of constraints of Lower Bound which should equal to the number of constraints
if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
errmsg = msprintf(gettext("%s: The Lower Bound of inequality constraints is not equal to the number of constraints"), "qpipoptmat");
error(errmsg);
end
//Check the size of constraints of Upper Bound which should equal to the number of constraints
if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
errmsg = msprintf(gettext("%s: The Upper Bound of equality constraints is not equal to the number of constraints"), "qpipoptmat");
error(errmsg);
end
//Check the size of initial of variables which should equal to the number of variables
if ( size(x0,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The initial guess of variables is not equal to the number of variables"), "qpipoptmat");
error(errmsg);
end
//Converting it into ipopt format
f = f';
LB = LB';
UB = UB';
x0 = x0';
conMatrix = [Aeq;A];
nbCon = size(conMatrix,1);
conLB = [beq; repmat(-%inf,nbConInEq,1)]';
conUB = [beq;b]' ;
[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,LB,UB,x0,options);
xopt = xopt';
exitflag = status;
output = struct("Iterations" , []);
output.Iterations = iter;
lambda = struct("lower" , [], ..
"upper" , [], ..
"ineqlin" , [], ..
"eqlin" , []);
lambda.lower = Zl;
lambda.upper = Zu;
lambda.eqlin = lmbda(1:nbConEq);
lambda.ineqlin = lmbda(nbConEq+1:nbCon);
endfunction
|