1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: harpreet.mertia@gmail.com
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// Solves a linear quadratic problem.
//
// Calling Sequence
// xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
// xopt = qpipopt(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB,x0)
// [xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
//
// Parameters
// nbVar : a 1 x 1 matrix of doubles, number of variables
// nbCon : a 1 x 1 matrix of doubles, number of constraints
<<<<<<< HEAD
// Q : a n x n symmetric matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
=======
// Q : a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.
>>>>>>> c2679735a3443017e003ca095d0476bae2dd8e40
// p : a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem
// LB : a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.
// UB : a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.
// conMatrix : a m x n matrix of doubles, where n is number of variables and m is number of constraints, contains matrix representing the constraint matrix
// conLB : a m x 1 matrix of doubles, where m is number of constraints, contains lower bounds of the constraints.
// conUB : a m x 1 matrix of doubles, where m is number of constraints, contains upper bounds of the constraints.
// x0 : a m x 1 matrix of doubles, where m is number of constraints, contains initial guess of variables.
// xopt : a 1xn matrix of doubles, the computed solution of the optimization problem.
// fopt : a 1x1 matrix of doubles, the function value at x.
// exitflag : Integer identifying the reason the algorithm terminated.
// output : Structure containing information about the optimization.
// lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
//
// Description
// Search the minimum of a constrained linear quadratic optimization problem specified by :
// find the minimum of f(x) such that
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2*x'*Q*x + p'*x \\
// & \text{subject to} & conLB \leq C(x) \leq conUB \\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
//
// We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by Andreas Wächter and Carl Laird.
//
// Examples
// //Find x in R^6 such that:
// conMatrix= [1,-1,1,0,3,1;
// -1,0,-3,-4,5,6;
// 2,5,3,0,1,0
// 0,1,0,1,2,-1;
// -1,0,2,1,1,0];
// conLB=[1;2;3;-%inf;-%inf];
// conUB = [1;2;3;-1;2.5];
// lb=[-1000;-10000; 0; -1000; -1000; -1000];
// ub=[10000; 100; 1.5; 100; 100; 1000];
// //and minimize 0.5*x'*Q*x + p'*x with
// p=[1; 2; 3; 4; 5; 6]; Q=eye(6,6);
// nbVar = 6;
// nbCon = 5;
// [xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
//
// Examples
// //Find the value of x that minimize following function
// // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
// // Subject to:
// // x1 + x2 ≤ 2
// // –x1 + 2x2 ≤ 2
// // 2x1 + x2 ≤ 3
// // 0 ≤ x1, 0 ≤ x2.
// Q = [1 -1; -1 2];
// p = [-2; -6];
// conMatrix = [1 1; -1 2; 2 1];
// conUB = [2; 2; 3];
// conLB = [-%inf; -%inf; -%inf];
// lb = [0; 0];
// ub = [%inf; %inf];
// nbVar = 2;
// nbCon = 3;
// [xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
//
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
//To check the number of argument given by user
if ( rhs < 9 | rhs > 10 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 9 or 10"), "qpipopt", rhs);
error(errmsg)
end
nbVar = varargin(1);
nbCon = varargin(2);
Q = varargin(3);
p = varargin(4);
LB = varargin(5);
UB = varargin(6);
conMatrix = varargin(7);
conLB = varargin(8);
conUB = varargin(9);
if ( rhs<10 ) then
x0 = repmat(0,1,nbVar)
else
x0 = varargin(10);
end
//IPOpt wants it in row matrix form
p = p';
LB = LB';
UB = UB';
conLB = conLB';
conUB = conUB';
//Checking the Q matrix which needs to be a symmetric matrix
if ( Q~=Q') then
errmsg = msprintf(gettext("%s: Q is not a symmetric matrix"), "qpipopt");
error(errmsg);
end
//Check the size of Q which should equal to the number of variable
if ( size(Q) ~= [nbVar nbVar]) then
errmsg = msprintf(gettext("%s: The Size of Q is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of p which should equal to the number of variable
if ( size(p,2) ~= [nbVar]) then
errmsg = msprintf(gettext("%s: The Size of p is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of constraint which should equal to the number of variables
if ( size(conMatrix,2) ~= nbVar) then
errmsg = msprintf(gettext("%s: The size of constraints is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of Lower Bound which should equal to the number of variables
if ( size(LB,2) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of Upper Bound which should equal to the number of variables
if ( size(UB,2) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
//Check the size of constraints of Lower Bound which should equal to the number of constraints
if ( size(conLB,2) ~= nbCon) then
errmsg = msprintf(gettext("%s: The Lower Bound of constraints is not equal to the number of constraints"), "qpipopt");
error(errmsg);
end
//Check the size of constraints of Upper Bound which should equal to the number of constraints
if ( size(conUB,2) ~= nbCon) then
errmsg = msprintf(gettext("%s: The Upper Bound of constraints is not equal to the number of constraints"), "qpipopt");
error(errmsg);
end
//Check the size of initial of variables which should equal to the number of variables
if ( size(x0,2) ~= nbVar) then
errmsg = msprintf(gettext("%s: The initial guess of variables is not equal to the number of variables"), "qpipopt");
error(errmsg);
end
[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0);
xopt = xopt';
exitflag = status;
output = struct("Iterations" , []);
output.Iterations = iter;
lambda = struct("lower" , [], ..
"upper" , [], ..
"constraint" , []);
lambda.lower = Zl;
lambda.upper = Zu;
lambda.constraint = lmbda;
endfunction
|