summaryrefslogtreecommitdiff
path: root/macros/lsqnonneg.sci
blob: a60d417360479b4e1a984be76163b0f4c6a7769d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in


function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
	// Solves nonnegative least-squares curve fitting problems.
	//
	//   Calling Sequence
	//   xopt = lsqnonneg(C,d)
	//   xopt = lsqnonneg(C,d,param)
	//   [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
	//   
	//   Parameters
	//   C : a matrix of double, represents the multiplier of the solution x in the expression C⋅x - d. Number of columns in C is equal to the number of elements in x.
	//   d : a vector of double, represents the additive constant term in the expression C⋅x - d. Number of elements in d is equal to the number of rows in C matrix.
	//   xopt : a vector of double, the computed solution of the optimization problem.
	//   resnorm : a double, objective value returned as the scalar value norm(C⋅x-d)^2.
	//   residual : a vector of double, solution residuals returned as the vector d-C⋅x.
	//   exitflag : The exit status. See below for details.
	//   output : The structure consist of statistics about the optimization. See below for details.
	//   lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
	//   
	//   Description
	//   Solves nonnegative least-squares curve fitting problems specified by :
	//
	//   <latex>
	//    \begin{eqnarray}
	//    &\mbox{min}_{x}
	//    & 1/2||C⋅x - d||_2^2  \\
	//    & & x \geq 0 \\
	//    \end{eqnarray}
	//   </latex>
	//   
	//   The routine calls Ipopt for solving the nonnegative least-squares curve fitting problems, Ipopt is a library written in C++.
	//
  	// The options allows the user to set various parameters of the Optimization problem. 
  	// It should be defined as type "list" and contains the following fields.
	// <itemizedlist>
	//   <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---]);</listitem>
	//   <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
	//   <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
	//   <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
	// </itemizedlist>
	//
	// The exitflag allows to know the status of the optimization which is given back by Ipopt.
	// <itemizedlist>
	//   <listitem>exitflag=0 : Optimal Solution Found </listitem>
	//   <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
	//   <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
	//   <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
	//   <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
	//   <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
	// </itemizedlist>
	//
	// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
	//
	// The output data structure contains detailed informations about the optimization process. 
	// It has type "struct" and contains the following fields.
	// <itemizedlist>
	//   <listitem>output.iterations: The number of iterations performed during the search</listitem>
	//   <listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
	// </itemizedlist>
	//
	// The lambda data structure contains the Lagrange multipliers at the end 
	// of optimization. In the current version the values are returned only when the the solution is optimal. 
	// It has type "struct" and contains the following fields.
	// <itemizedlist>
	//   <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
	//   <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
	// </itemizedlist>
	//    
	// Examples 
	// // A basic lsqnonneg problem
	//		C = [1 1 1;
	//			1 1 0;
	//			0 1 1;
	//			1 0 0;
	//			0 0 1]
	//		d = [89;
	//			67;
	//			53;
	//			35;
	//			20;]
	// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
	// Authors
	// Harpreet Singh


	//To check the number of input and output argument
	[lhs , rhs] = argn();

	//To check the number of argument given by user
	if ( rhs < 2 | rhs > 3 ) then
		errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 3]"), "lsqnonneg", rhs);
		error(errmsg)
	end

	C = varargin(1);
	d = varargin(2);
	nbVar = size(C,2);

	if(nbVar == 0) then
		errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"), "lsqnonneg");
		error(errmsg);
	end

	if ( rhs<3 | size(varargin(3)) ==0 ) then
		param = list();
	else
		param =varargin(3);
	end

	if (type(param) ~= 15) then
		errmsg = msprintf(gettext("%s: param should be a list "), "lsqnonneg");
		error(errmsg);
	end

	//Check type of variables
	Checktype("lsqnonneg", C, "C", 1, "constant")
	Checktype("lsqnonneg", d, "d", 2, "constant")

	if (modulo(size(param),2)) then
		errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqnonneg");
		error(errmsg);
	end

	options = list(	"MaxIter"   , [3000], ...
					"CpuTime"   , [600] ...
	);

	for i = 1:(size(param))/2

		select convstr(param(2*i-1),'l')
			case "maxiter" then
				options(2*i) = param(2*i);
			case "cputime" then
				options(2*i) = param(2*i);
			else
				errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
				error(errmsg)
		end
	end

	// Check if the user gives row vector 
	// and Changing it to a column matrix


	if (size(d,2)== [nbVar]) then
		d=d';
	end

	//Check the size of f which should equal to the number of variable
	if ( size(d,1) ~= size(C,1)) then
		errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqnonneg");
		error(errmsg);
	end

	//Converting it into Quadratic Programming Problem

	Q = C'*C;
	p = [-C'*d]';
	op_add = d'*d;
	lb = repmat(0,1,nbVar);
	ub = repmat(%inf,1,nbVar);	
	x0 = repmat(0,1,nbVar);;
	conMatrix = [];
	nbCon = size(conMatrix,1);
	conLB = [];
	conUB = [] ; 
	[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,lb,ub,x0,options);

	xopt = xopt';
	residual = -1*(C*xopt-d);
	resnorm = residual'*residual;
	exitflag = status;
	output = struct("Iterations"      , [], ..
					"ConstrViolation" ,[]);
	output.Iterations = iter;
	output.ConstrViolation = max([0;(lb'-xopt);(xopt-ub')]);

	lambda = struct("lower"           , [], ..
		           "upper"           , []);
	lambda.lower = Zl;
	lambda.upper = Zu;

	select status 
		case 0 then
			printf("\nOptimal Solution Found.\n");
		case 1 then
			printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
		case 2 then
			printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
		case 3 then
			printf("\nStop at Tiny Step\n");
		case 4 then
			printf("\nSolved To Acceptable Level\n");
		case 5 then
			printf("\nConverged to a point of local infeasibility.\n");
		case 6 then
			printf("\nStopping optimization at current point as requested by user.\n");
		case 7 then
			printf("\nFeasible point for square problem found.\n");
		case 8 then 
			printf("\nIterates diverging; problem might be unbounded.\n");
		case 9 then
			printf("\nRestoration Failed!\n");
		case 10 then
			printf("\nError in step computation (regularization becomes too large?)!\n");
		case 12 then
			printf("\nProblem has too few degrees of freedom.\n");
		case 13 then
			printf("\nInvalid option thrown back by Ipopt\n");
		case 14 then
			printf("\nNot enough memory.\n");
		case 15 then
			printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
		else
			printf("\nInvalid status returned. Notify the Toolbox authors\n");
		break;
	end

endfunction