1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// Solves nonnegative least-squares curve fitting problems.
//
// Calling Sequence
// xopt = lsqnonneg(C,d)
// xopt = lsqnonneg(C,d,param)
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
//
// Parameters
// C : a matrix of double, represents the multiplier of the solution x in the expression C⋅x - d. Number of columns in C is equal to the number of elements in x.
// d : a vector of double, represents the additive constant term in the expression C⋅x - d. Number of elements in d is equal to the number of rows in C matrix.
// xopt : a vector of double, the computed solution of the optimization problem.
// resnorm : a double, objective value returned as the scalar value norm(C⋅x-d)^2.
// residual : a vector of double, solution residuals returned as the vector d-C⋅x.
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// Solves nonnegative least-squares curve fitting problems specified by :
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2||C⋅x - d||_2^2 \\
// & & x \geq 0 \\
// \end{eqnarray}
// </latex>
//
// The routine calls Ipopt for solving the nonnegative least-squares curve fitting problems, Ipopt is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
// <itemizedlist>
// <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---]);</listitem>
// <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
// <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
// <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
// </itemizedlist>
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
// <itemizedlist>
// <listitem>exitflag=0 : Optimal Solution Found </listitem>
// <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
// <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
// <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
// </itemizedlist>
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>output.iterations: The number of iterations performed during the search</listitem>
// <listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
// </itemizedlist>
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
// <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
// </itemizedlist>
//
// Examples
// // A basic lsqnonneg problem
// C = [1 1 1;
// 1 1 0;
// 0 1 1;
// 1 0 0;
// 0 0 1]
// d = [89;
// 67;
// 53;
// 35;
// 20;]
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
// Authors
// Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
//To check the number of argument given by user
if ( rhs < 2 | rhs > 3 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 3]"), "lsqnonneg", rhs);
error(errmsg)
end
C = varargin(1);
d = varargin(2);
nbVar = size(C,2);
if(nbVar == 0) then
errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"), "lsqnonneg");
error(errmsg);
end
if ( rhs<3 | size(varargin(3)) ==0 ) then
param = list();
else
param =varargin(3);
end
if (type(param) ~= 15) then
errmsg = msprintf(gettext("%s: param should be a list "), "lsqnonneg");
error(errmsg);
end
//Check type of variables
Checktype("lsqnonneg", C, "C", 1, "constant")
Checktype("lsqnonneg", d, "d", 2, "constant")
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqnonneg");
error(errmsg);
end
options = list( "MaxIter" , [3000], ...
"CpuTime" , [600] ...
);
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case "maxiter" then
options(2*i) = param(2*i);
case "cputime" then
options(2*i) = param(2*i);
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
error(errmsg)
end
end
// Check if the user gives row vector
// and Changing it to a column matrix
if (size(d,2)== [nbVar]) then
d=d';
end
//Check the size of f which should equal to the number of variable
if ( size(d,1) ~= size(C,1)) then
errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqnonneg");
error(errmsg);
end
//Converting it into Quadratic Programming Problem
Q = C'*C;
p = [-C'*d]';
op_add = d'*d;
lb = repmat(0,1,nbVar);
ub = repmat(%inf,1,nbVar);
x0 = repmat(0,1,nbVar);;
conMatrix = [];
nbCon = size(conMatrix,1);
conLB = [];
conUB = [] ;
[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,lb,ub,x0,options);
xopt = xopt';
residual = -1*(C*xopt-d);
resnorm = residual'*residual;
exitflag = status;
output = struct("Iterations" , [], ..
"ConstrViolation" ,[]);
output.Iterations = iter;
output.ConstrViolation = max([0;(lb'-xopt);(xopt-ub')]);
lambda = struct("lower" , [], ..
"upper" , []);
lambda.lower = Zl;
lambda.upper = Zu;
select status
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
case 2 then
printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
case 3 then
printf("\nStop at Tiny Step\n");
case 4 then
printf("\nSolved To Acceptable Level\n");
case 5 then
printf("\nConverged to a point of local infeasibility.\n");
case 6 then
printf("\nStopping optimization at current point as requested by user.\n");
case 7 then
printf("\nFeasible point for square problem found.\n");
case 8 then
printf("\nIterates diverging; problem might be unbounded.\n");
case 9 then
printf("\nRestoration Failed!\n");
case 10 then
printf("\nError in step computation (regularization becomes too large?)!\n");
case 12 then
printf("\nProblem has too few degrees of freedom.\n");
case 13 then
printf("\nInvalid option thrown back by Ipopt\n");
case 14 then
printf("\nNot enough memory.\n");
case 15 then
printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
break;
end
endfunction
|