1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin (varargin)
// Solves a non linear data fitting problems.
//
// Calling Sequence
// xopt = lsqnonlin(fun,x0)
// xopt = lsqnonlin(fun,x0,lb,ub)
// xopt = lsqnonlin(fun,x0,lb,ub,options)
// [xopt,resnorm] = lsqnonlin( ... )
// [xopt,resnorm,residual] = lsqnonlin( ... )
// [xopt,resnorm,residual,exitflag] = lsqnonlin( ... )
// [xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin( ... )
//
// Parameters
// fun : a function, representing the objective function and gradient (if given) of the problem
// x0 : a vector of double, contains initial guess of variables.
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
// options : a list containing the parameters to be set.
// xopt : a vector of double, the computed solution of the optimization problem.
// resnorm : a double, objective value returned as the scalar value i.e. sum(fun(x).^2).
// residual : a vector of double, solution of objective function i.e. fun(x).
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
// gradient : a vector of doubles, containing the Objective's gradient of the solution.
//
// Description
// Search the minimum of a constrained non-linear least square problem specified by :
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & (f_1(x)^2 + f_2(x)^2 + ... + f_n(x)^2) \\
// & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
//
// The routine calls fmincon which calls Ipopt for solving the non-linear least square problem, Ipopt is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
// <itemizedlist>
// <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---],"GradObj", "on");</listitem>
// <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
// <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
// <listitem>GradObj : a string, representing the gradient function is on or off.</listitem>
// <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600], "GradObj", "off");</listitem>
// </itemizedlist>
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
// <itemizedlist>
// <listitem>exitflag=0 : Optimal Solution Found </listitem>
// <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
// <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
// <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
// </itemizedlist>
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>output.iterations: The number of iterations performed during the search</listitem>
// <listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
// </itemizedlist>
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
// <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
// </itemizedlist>
//
// Examples
// //A simple non-linear least square example taken from leastsq default present in scilab
// function y=yth(t, x)
// y = x(1)*exp(-x(2)*t)
// endfunction
// // we have the m measures (ti, yi):
// m = 10;
// tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]';
// ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]';
// // measure weights (here all equal to 1...)
// wm = ones(m,1);
// // and we want to find the parameters x such that the model fits the given
// // data in the least square sense:
// //
// // minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2
// // initial parameters guess
// x0 = [1.5 ; 0.8];
// // in the first examples, we define the function fun and dfun
// // in scilab language
// function y=myfun(x, tm, ym, wm)
// y = wm.*( yth(tm, x) - ym )
// endfunction
// // the simplest call
// [xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0)
// // Press ENTER to continue
//
// Examples
// //A basic example taken from leastsq default present in scilab with gradient
// function y=yth(t, x)
// y = x(1)*exp(-x(2)*t)
// endfunction
// // we have the m measures (ti, yi):
// m = 10;
// tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]';
// ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]';
// // measure weights (here all equal to 1...)
// wm = ones(m,1);
// // and we want to find the parameters x such that the model fits the given
// // data in the least square sense:
// //
// // minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2
// // initial parameters guess
// x0 = [1.5 ; 0.8];
// // in the first examples, we define the function fun and dfun
// // in scilab language
// function [y,dy]=myfun(x, tm, ym, wm)
// y = wm.*( yth(tm, x) - ym )
// v = wm.*exp(-x(2)*tm)
// dy = [v , -x(1)*tm.*v]
// endfunction
// options = list("GradObj", "on")
// [xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,[],[],options)
// Authors
// Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
//To check the number of argument given by user
if ( rhs < 2 | rhs == 3 | rhs > 5 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 4 5]"), "lsqnonlin", rhs);
error(errmsg)
end
// Initializing all the values to empty matrix
_fun = varargin(1);
x0 = varargin(2);
nbVar = size(x0,'*');
if(nbVar == 0) then
errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input initial guess is empty"), "lsqcurvefit");
error(errmsg);
end
if (size(x0,2)~=1) then
errmsg = msprintf(gettext("%s: Initial Guess should be a column matrix"), "lsqcurvefit");
error(errmsg);
end
if ( rhs<3 ) then
lb = repmat(-%inf,nbVar,1);
ub = repmat(%inf,nbVar,1);
else
lb = varargin(3);
ub = varargin(4);
end
if ( rhs<7 | size(varargin(5)) ==0 ) then
param = list();
else
param =varargin(5);
end
if (size(lb,2)==0) then
lb = repmat(-%inf,nbVar,1);
end
if (size(ub,2)==0) then
ub = repmat(%inf,nbVar,1);
end
if (type(param) ~= 15) then
errmsg = msprintf(gettext("%s: param should be a list "), "lsqnonlin");
error(errmsg);
end
//Check type of variables
Checktype("lsqnonlin", _fun, "fun", 1, "function")
Checktype("lsqnonlin", x0, "x0", 2, "constant")
Checktype("lsqnonlin", lb, "lb", 3, "constant")
Checktype("lsqnonlin", ub, "ub", 4, "constant")
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqnonlin");
error(errmsg);
end
options = list( "MaxIter" , [3000], ...
"CpuTime" , [600], ...
"GradObj" , ["off"]);
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case "maxiter" then
options(2*i) = param(2*i);
Checktype("lsqcurvefit", param(2*i), "maxiter", i, "constant")
case "cputime" then
options(2*i) = param(2*i);
Checktype("lsqcurvefit", param(2*i), "cputime", i, "constant")
case "gradobj" then
if (convstr(param(2*i))=="on") then
options(2*i) = "on";
else
errmsg = msprintf(gettext("%s: Unrecognized String [%s] entered for gradobj."), "lsqnonlin",param(2*i));
error(errmsg);
end
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqnonlin", param(2*i-1));
error(errmsg)
end
end
// Check if the user gives row vector
// and Changing it to a column matrix
if (size(lb,2)== [nbVar]) then
lb = lb(:);
end
if (size(ub,2)== [nbVar]) then
ub = ub(:);
end
//To check the match between fun (1st Parameter) and x0 (2nd Parameter)
if(execstr('init=_fun(x0)','errcatch')==21) then
errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fmincon");
error(errmsg);
end
ierr = execstr('init=_fun(x0)', "errcatch")
if ierr <> 0 then
lamsg = lasterror();
lclmsg = "%s: Error while evaluating the function: ""%s""\n";
error(msprintf(gettext(lclmsg), "lsqnonlin", lamsg));
end
//Check the size of Lower Bound which should be equal to the number of variables
if ( size(lb,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "lsqnonlin");
error(errmsg);
end
//Check the size of Upper Bound which should equal to the number of variables
if ( size(ub,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "lsqnonlin");
error(errmsg);
end
//Check if the user gives a matrix instead of a vector
if (size(lb,1)~=1)& (size(lb,2)~=1) then
errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "lsqnonlin");
error(errmsg);
end
if (size(ub,1)~=1)& (size(ub,2)~=1) then
errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "lsqnonlin");
error(errmsg);
end
for i = 1:nbVar
if(lb(i)>ub(i))
errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "lsqnonlin");
error(errmsg);
end
end
//Converting it into fmincon Problem
function [y] = __fun(x)
[xVal] = _fun(x);
y = sum(xVal.^2);
endfunction
if (options(6) == "on")
ierr = execstr('[initx initdx]=_fun(x0)', "errcatch")
if ierr <> 0 then
lamsg = lasterror();
lclmsg = "%s: Error while evaluating the function: ""%s""\n";
error(msprintf(gettext(lclmsg), "lsqnonlin", lamsg));
end
function [dy] = __fGrad(x)
[x_user,dx_user] = _fun(x)
dy = 2*dx_user*(x_user');
endfunction
options(6) = __fGrad;
end
[xopt,fopt,exitflag,output,lambda_fmincon,gradient] = fmincon(__fun,x0,[],[],[],[],lb,ub,[],options);
lambda = struct("lower", lambda_fmincon.lower,"upper",lambda_fmincon.upper);
resnorm = sum(_fun(xopt).^2);
residual = _fun(xopt);
endfunction
|