summaryrefslogtreecommitdiff
path: root/macros/lsqlin.sci
blob: 4a5fa2dfc79698b93d95f2242aeef43f63e2e715 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: harpreet.mertia@gmail.com
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt


function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
	// Solves a linear quadratic problem.
	//
	//   Calling Sequence
	//   x = lsqlin(C,d,A,b)
	//   x = lsqlin(C,d,A,b,Aeq,beq)
	//   x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
	//   x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
	//   x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
	//   [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
	//   
	//   Parameters
	//   C : a matrix of doubles, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x.
	//   d : a vector of doubles, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations.
	//   A : a vector of doubles, represents the linear coefficients in the inequality constraints
	//   b : a vector of doubles, represents the linear coefficients in the inequality constraints
	//   Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
	//   beq : a vector of doubles, represents the linear coefficients in the equality constraints
	//   LB : a vector of doubles, contains lower bounds of the variables.
	//   UB : a vector of doubles,  contains upper bounds of the variables.
	//   x0 : a vector of doubles, contains initial guess of variables.
	//   param : a list containing the the parameters to be set.
	//   xopt : a vector of doubles, the computed solution of the optimization problem.
	//   resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2.
	//   residual : a vector of doubles, solution residuals returned as the vector C*x-d.
	//   exitflag : Integer identifying the reason the algorithm terminated.
	//   output : Structure containing information about the optimization.
	//   lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
	//   
	//   Description
	//   Search the minimum of a constrained linear least square problem specified by :
	//
	//   <latex>
	//    \begin{eqnarray}
	//    &\mbox{min}_{x}
	//    & 1/2||C*x - d||_2^2  \\
	//    & \text{subject to} & A.x \leq b \\
	//    & & Aeq.x \leq beq \\
	//    & & lb \leq x \leq ub \\
	//    \end{eqnarray}
	//   </latex>
	//   
	//   We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
	//
	// Examples
	// //A simple linear least square example
	// C = [0.9501    0.7620    0.6153    0.4057
	//     0.2311    0.4564    0.7919    0.9354
	//     0.6068    0.0185    0.9218    0.9169
	//     0.4859    0.8214    0.7382    0.4102
	//     0.8912    0.4447    0.1762    0.8936];
	// d = [0.0578
	//     0.3528
	//     0.8131
	//     0.0098
	//     0.1388];
	// A = [0.2027    0.2721    0.7467    0.4659
	//     0.1987    0.1988    0.4450    0.4186
	//     0.6037    0.0152    0.9318    0.8462];
	// b = [0.5251
	//     0.2026
	//     0.6721];
	// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
	//    
	// Examples 
	// C = [0.9501    0.7620    0.6153    0.4057
	//     0.2311    0.4564    0.7919    0.9354
	//     0.6068    0.0185    0.9218    0.9169
	//     0.4859    0.8214    0.7382    0.4102
	//     0.8912    0.4447    0.1762    0.8936];
	// d = [0.0578
	//     0.3528
	//     0.8131
	//     0.0098
	//     0.1388];
	// A =[0.2027    0.2721    0.7467    0.4659
	//     0.1987    0.1988    0.4450    0.4186
	//     0.6037    0.0152    0.9318    0.8462];
	// b =[0.5251
	//     0.2026
	//     0.6721];
	// Aeq = [3 5 7 9];
	// beq = 4;
	// lb = -0.1*ones(4,1);
	// ub = 2*ones(4,1);
	// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
	//
	// Authors
	// Harpreet Singh


	//To check the number of input and output argument
	[lhs , rhs] = argn();

	//To check the number of argument given by user
	if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 10 ) then
		errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [4 6 8 9 10]"), "lsqlin", rhs);
		error(errmsg)
	end

	C = varargin(1);
	d = varargin(2);
	A = varargin(3);
	b = varargin(4);
	nbVar = size(C,2);

	if ( rhs<5 ) then
		Aeq = []
		beq = []
	else
		Aeq = varargin(5);
		beq = varargin(6);
	end

	if ( rhs<7 ) then
		LB = repmat(-%inf,nbVar,1);
		UB = repmat(%inf,nbVar,1);
	else
		LB = varargin(7);
		UB = varargin(8);
	end


	if ( rhs<9 | size(varargin(9)) ==0 ) then
		x0 = repmat(0,nbVar,1)
	else
		x0 = varargin(9);
	end

	if ( rhs<10 | size(varargin(10)) ==0 ) then
		param = list();
	else
		param =varargin(10);
	end

	if (size(LB,2)==0) then
		LB = repmat(-%inf,nbVar,1);
	end

	if (size(UB,2)==0) then
		UB = repmat(%inf,nbVar,1);
	end

	if (type(param) ~= 15) then
		errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin");
		error(errmsg);
	end


	if (modulo(size(param),2)) then
		errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin");
		error(errmsg);
	end

	options = list(	"MaxIter"     , [3000], ...
					"CpuTime"   , [600] ...
	);

	for i = 1:(size(param))/2

		select param(2*i-1)
			case "MaxIter" then
				options(2*i) = param(2*i);
			case "CpuTime" then
				options(2*i) = param(2*i);
			else
				errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
				error(errmsg)
		end
	end

	nbConInEq = size(A,1);
	nbConEq = size(Aeq,1);

	// Check if the user gives row vector 
	// and Changing it to a column matrix


	if (size(d,2)== [nbVar]) then
		d=d';
	end

	if (size(LB,2)== [nbVar]) then
		LB = LB';
	end

	if (size(UB,2)== [nbVar]) then
		UB = UB';
	end

	if (size(b,2)==nbConInEq) then
		b = b';
	end

	if (size(beq,2)== nbConEq) then
		beq = beq';
	end

	if (size(x0,2)== [nbVar]) then
		x0=x0';
	end

	//Check the size of d which should equal to the number of variable
	if ( size(d,1) ~= size(C,1)) then
		errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin");
		error(errmsg);
	end

	//Check the size of inequality constraint which should be equal to the number of variables
	if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
		errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of elements of d"), "lsqlin");
		error(errmsg);
	end

	//Check the size of equality constraint which should be equal to the number of variables
	if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
		errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of elements of d"), "lsqlin");
		error(errmsg);
	end

	//Check the size of Lower Bound which should be equal to the number of variables
	if ( size(LB,1) ~= nbVar) then
		errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "lsqlin");
		error(errmsg);
	end

	//Check the size of Upper Bound which should equal to the number of variables
	if ( size(UB,1) ~= nbVar) then
		errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "lsqlin");
		error(errmsg);
	end

	//Check the size of constraints of Lower Bound which should equal to the number of constraints
	if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
		errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elementsof b"), "lsqlin");
		error(errmsg);
	end

	//Check the size of constraints of Upper Bound which should equal to the number of constraints
	if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
		errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "lsqlin");
		error(errmsg);
	end

	//Check the size of initial of variables which should equal to the number of variables
	if ( size(x0,1) ~= nbVar) then
		warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "lsqlin");
		warning(warnmsg);
	end

	//Check if the user gives a matrix instead of a vector

	if ((size(d,1)~=1)& (size(d,2)~=1)) then
		errmsg = msprintf(gettext("%s: d should be a vector"), "lsqlin");
		error(errmsg); 
	end

	if (size(LB,1)~=1)& (size(LB,2)~=1) then
		errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "lsqlin");
		error(errmsg); 
	end

	if (size(UB,1)~=1)& (size(UB,2)~=1) then
		errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "lsqlin");
		error(errmsg); 
	end

	if (nbConInEq) then
		if ((size(b,1)~=1)& (size(b,2)~=1)) then
			errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "lsqlin");
			error(errmsg); 
		end
	end

	if (nbConEq) then
		if (size(beq,1)~=1)& (size(beq,2)~=1) then
			errmsg = msprintf(gettext("%s: Constraint should be a vector"), "lsqlin");
			error(errmsg); 
		end
	end

	for i = 1:nbConInEq
		if (b(i) == -%inf)
		   	errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "qpipoptmat");
            error(errmsg); 
        end	
	end
    
	for i = 1:nbConEq
		if (beq(i) == -%inf)
		   	errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "qpipoptmat");
            error(errmsg); 
        end	
	end

	//Converting it into Quadratic Programming Problem

	Q = C'*C;
	p = [-C'*d]';
	op_add = d'*d;
	LB = LB';
	UB = UB';
	x0 = x0';
	conMatrix = [Aeq;A];
	nbCon = size(conMatrix,1);
	conLB = [beq; repmat(-%inf,nbConInEq,1)]';
	conUB = [beq;b]' ; 
	[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options);

	xopt = xopt';
	residual = -1*(C*xopt-d);
	resnorm = residual'*residual;
	exitflag = status;
	output = struct("Iterations"      , []);
	output.Iterations = iter;
   lambda = struct("lower"           , [], ..
                   "upper"           , [], ..
                   "eqlin"           , [], ..
				   "ineqlin"         , []);
   
   lambda.lower = Zl;
   lambda.upper = Zu;
   lambda.eqlin = lmbda(1:nbConEq);
   lambda.ineqlin = lmbda(nbConEq+1:nbCon);

	select status 
		case 0 then
			printf("\nOptimal Solution Found.\n");
		case 1 then
			printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
		case 2 then
			printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
		case 3 then
			printf("\nStop at Tiny Step\n");
		case 4 then
			printf("\nSolved To Acceptable Level\n");
		case 5 then
			printf("\nConverged to a point of local infeasibility.\n");
		case 6 then
			printf("\nStopping optimization at current point as requested by user.\n");
		case 7 then
			printf("\nFeasible point for square problem found.\n");
		case 8 then 
			printf("\nIterates diverging; problem might be unbounded.\n");
		case 9 then
			printf("\nRestoration Failed!\n");
		case 10 then
			printf("\nError in step computation (regularization becomes too large?)!\n");
		case 12 then
			printf("\nProblem has too few degrees of freedom.\n");
		case 13 then
			printf("\nInvalid option thrown back by IPOpt\n");
		case 14 then
			printf("\nNot enough memory.\n");
		case 15 then
			printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.\n");
		else
			printf("\nInvalid status returned. Notify the Toolbox authors\n");
		break;
	end

endfunction