1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// Solves a linear quadratic problem.
//
// Calling Sequence
// xopt = lsqlin(C,d,A,b)
// xopt = lsqlin(C,d,A,b,Aeq,beq)
// xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
// xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
// xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
//
// Parameters
// C : a matrix of double, represents the multiplier of the solution x in the expression C⋅x - d. Number of columns in C is equal to the number of elements in x.
// d : a vector of double, represents the additive constant term in the expression C⋅x - d. Number of elements in d is equal to the number of rows in C matrix.
// A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
// x0 : a vector of double, contains initial guess of variables.
// param : a list containing the parameters to be set.
// xopt : a vector of double, the computed solution of the optimization problem.
// resnorm : a double, objective value returned as the scalar value norm(C⋅x-d)^2.
// residual : a vector of double, solution residuals returned as the vector d-C⋅x.
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// Search the minimum of a constrained linear least square problem specified by :
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2||C⋅x - d||_2^2 \\
// & \text{subject to} & A⋅x \leq b \\
// & & Aeq⋅x = beq \\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
//
// The routine calls Ipopt for solving the linear least square problem, Ipopt is a library written in C++.
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
// <itemizedlist>
// <listitem>exitflag=0 : Optimal Solution Found </listitem>
// <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
// <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
// <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
// </itemizedlist>
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>output.iterations: The number of iterations performed during the search</listitem>
// <listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
// </itemizedlist>
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
// <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
// <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
// <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
// </itemizedlist>
//
// Examples
// //A simple linear least square example
// C = [ 2 0;
// -1 1;
// 0 2]
// d = [1
// 0
// -1];
// A = [10 -2;
// -2 10];
// b = [4
// -4];
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
// // Press ENTER to continue
//
// Examples
// //A basic example for equality, inequality constraints and variable bounds
// C = [1 1 1;
// 1 1 0;
// 0 1 1;
// 1 0 0;
// 0 0 1]
// d = [89;
// 67;
// 53;
// 35;
// 20;]
// A = [3 2 1;
// 2 3 4;
// 1 2 3];
// b = [191
// 209
// 162];
// Aeq = [1 2 1];
// beq = 10;
// lb = repmat(0.1,3,1);
// ub = repmat(4,3,1);
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
// Authors
// Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
//To check the number of argument given by user
if ( rhs < 4 | rhs == 5 | rhs == 7 | rhs > 10 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [4 6 8 9 10]"), "lsqlin", rhs);
error(errmsg)
end
// Initializing all the values to empty matrix
C=[];
d=[];
A=[];
b=[];
Aeq=[];
beq=[];
lb=[];
ub=[];
x0=[];
C = varargin(1);
d = varargin(2);
A = varargin(3);
b = varargin(4);
nbVar = size(C,2);
if(nbVar == 0) then
errmsg = msprintf(gettext("%s: Cannot determine the number of variables because input objective coefficients is empty"), "lsqlin");
error(errmsg);
end
if ( rhs<5 ) then
Aeq = []
beq = []
else
Aeq = varargin(5);
beq = varargin(6);
end
if ( rhs<7 ) then
lb = repmat(-%inf,nbVar,1);
ub = repmat(%inf,nbVar,1);
else
lb = varargin(7);
ub = varargin(8);
end
if ( rhs<9 | size(varargin(9)) ==0 ) then
x0 = repmat(0,nbVar,1)
else
x0 = varargin(9);
end
if ( rhs<10 | size(varargin(10)) ==0 ) then
param = list();
else
param =varargin(10);
end
if (size(lb,2)==0) then
lb = repmat(-%inf,nbVar,1);
end
if (size(ub,2)==0) then
ub = repmat(%inf,nbVar,1);
end
if (type(param) ~= 15) then
errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin");
error(errmsg);
end
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin");
error(errmsg);
end
options = list( "MaxIter" , [3000], ...
"CpuTime" , [600] ...
);
for i = 1:(size(param))/2
select param(2*i-1)
case "MaxIter" then
options(2*i) = param(2*i);
case "CpuTime" then
options(2*i) = param(2*i);
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
error(errmsg)
end
end
nbConInEq = size(A,1);
nbConEq = size(Aeq,1);
// Check if the user gives row vector
// and Changing it to a column matrix
if (size(d,2)== [nbVar]) then
d=d';
end
if (size(lb,2)== [nbVar]) then
lb = lb';
end
if (size(ub,2)== [nbVar]) then
ub = ub';
end
if (size(b,2)==nbConInEq) then
b = b';
end
if (size(beq,2)== nbConEq) then
beq = beq';
end
if (size(x0,2)== [nbVar]) then
x0=x0';
end
//Check the size of d which should equal to the number of variable
if ( size(d,1) ~= size(C,1)) then
errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin");
error(errmsg);
end
//Check the size of inequality constraint which should be equal to the number of variables
if ( size(A,2) ~= nbVar & size(A,2) ~= 0) then
errmsg = msprintf(gettext("%s: The number of columns in A must be the same as the number of columns in C"), "lsqlin");
error(errmsg);
end
//Check the size of equality constraint which should be equal to the number of variables
if ( size(Aeq,2) ~= nbVar & size(Aeq,2) ~= 0 ) then
errmsg = msprintf(gettext("%s: The number of columns in Aeq must be the same as the number of columns in C"), "lsqlin");
error(errmsg);
end
//Check the size of Lower Bound which should be equal to the number of variables
if ( size(lb,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Lower Bound is not equal to the number of variables"), "lsqlin");
error(errmsg);
end
//Check the size of Upper Bound which should equal to the number of variables
if ( size(ub,1) ~= nbVar) then
errmsg = msprintf(gettext("%s: The Upper Bound is not equal to the number of variables"), "lsqlin");
error(errmsg);
end
//Check the size of constraints of Lower Bound which should equal to the number of constraints
if ( size(b,1) ~= nbConInEq & size(b,1) ~= 0) then
errmsg = msprintf(gettext("%s: The number of rows in A must be the same as the number of elements of b"), "lsqlin");
error(errmsg);
end
//Check the size of constraints of Upper Bound which should equal to the number of constraints
if ( size(beq,1) ~= nbConEq & size(beq,1) ~= 0) then
errmsg = msprintf(gettext("%s: The number of rows in Aeq must be the same as the number of elements of beq"), "lsqlin");
error(errmsg);
end
//Check the size of initial of variables which should equal to the number of variables
if ( size(x0,1) ~= nbVar) then
warnmsg = msprintf(gettext("%s: Ignoring initial guess of variables as it is not equal to the number of variables"), "lsqlin");
warning(warnmsg);
x0 = repmat(0,nbVar,1);
end
//Check if the user gives a matrix instead of a vector
if ((size(d,1)~=1)& (size(d,2)~=1)) then
errmsg = msprintf(gettext("%s: d should be a vector"), "lsqlin");
error(errmsg);
end
if (size(lb,1)~=1)& (size(lb,2)~=1) then
errmsg = msprintf(gettext("%s: Lower Bound should be a vector"), "lsqlin");
error(errmsg);
end
if (size(ub,1)~=1)& (size(ub,2)~=1) then
errmsg = msprintf(gettext("%s: Upper Bound should be a vector"), "lsqlin");
error(errmsg);
end
if (nbConInEq) then
if ((size(b,1)~=1)& (size(b,2)~=1)) then
errmsg = msprintf(gettext("%s: Constraint Lower Bound should be a vector"), "lsqlin");
error(errmsg);
end
end
if (nbConEq) then
if (size(beq,1)~=1)& (size(beq,2)~=1) then
errmsg = msprintf(gettext("%s: Constraint should be a vector"), "lsqlin");
error(errmsg);
end
end
for i = 1:nbConInEq
if (b(i) == -%inf)
errmsg = msprintf(gettext("%s: Value of b can not be negative infinity"), "lsqlin");
error(errmsg);
end
end
for i = 1:nbConEq
if (beq(i) == -%inf)
errmsg = msprintf(gettext("%s: Value of beq can not be negative infinity"), "lsqlin");
error(errmsg);
end
end
for i = 1:nbVar
if(lb(i)>ub(i))
errmsg = msprintf(gettext("%s: Problem has inconsistent variable bounds"), "lsqlin");
error(errmsg);
end
end
//Converting it into Quadratic Programming Problem
H = C'*C;
f = [-C'*d]';
op_add = d'*d;
lb = lb';
ub = ub';
x0 = x0';
conMatrix = [Aeq;A];
nbCon = size(conMatrix,1);
conLB = [beq; repmat(-%inf,nbConInEq,1)]';
conUB = [beq;b]' ;
[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,H,f,conMatrix,conLB,conUB,lb,ub,x0,options);
xopt = xopt';
residual = d-C*xopt;
resnorm = residual'*residual;
exitflag = status;
output = struct("Iterations" , [], ..
"ConstrViolation" ,[]);
output.Iterations = iter;
output.ConstrViolation = max([0;norm(Aeq*xopt-beq, 'inf');(lb'-xopt);(xopt-ub');(A*xopt-b)]);
lambda = struct("lower" , [], ..
"upper" , [], ..
"eqlin" , [], ..
"ineqlin" , []);
lambda.lower = Zl;
lambda.upper = Zu;
lambda.eqlin = lmbda(1:nbConEq);
lambda.ineqlin = lmbda(nbConEq+1:nbCon);
select status
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
case 2 then
printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
case 3 then
printf("\nStop at Tiny Step\n");
case 4 then
printf("\nSolved To Acceptable Level\n");
case 5 then
printf("\nConverged to a point of local infeasibility.\n");
case 6 then
printf("\nStopping optimization at current point as requested by user.\n");
case 7 then
printf("\nFeasible point for square problem found.\n");
case 8 then
printf("\nIterates diverging; problem might be unbounded.\n");
case 9 then
printf("\nRestoration Failed!\n");
case 10 then
printf("\nError in step computation (regularization becomes too large?)!\n");
case 12 then
printf("\nProblem has too few degrees of freedom.\n");
case 13 then
printf("\nInvalid option thrown back by Ipopt\n");
case 14 then
printf("\nNot enough memory.\n");
case 15 then
printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
break;
end
endfunction
|