summaryrefslogtreecommitdiff
path: root/macros/fminunc.sci
blob: a936aa1b0005ae578f71b60d5e50078ff9050975 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: R.Vidyadhar & Vignesh Kannan
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in

function [xopt,fopt,exitflag,output,gradient,hessian] = fminunc (varargin)
  	// Solves a multi-variable unconstrainted optimization problem
  	//
  	//   Calling Sequence
  	//   xopt = fminunc(f,x0)
  	//   xopt = fminunc(f,x0,options)
  	//   [xopt,fopt] = fminunc(.....)
  	//   [xopt,fopt,exitflag]= fminunc(.....)
  	//   [xopt,fopt,exitflag,output]= fminunc(.....)
  	//   [xopt,fopt,exitflag,output,gradient]=fminunc(.....)
  	//   [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(.....)
  	//
  	//   Parameters
  	//   f : a function, representing the objective function of the problem 
  	//   x0 : a vector of doubles, containing the starting of variables.
  	//   options: a list, containing the option for user to specify. See below for details.
  	//   xopt : a vector of doubles, the computed solution of the optimization problem.
  	//   fopt : a scalar of double, the function value at x. 
  	//   exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
  	//   output   : a structure, containing the information about the optimization. See below for details.
  	//   gradient : a vector of doubles, containing the the gradient of the solution.
  	//   hessian  : a matrix of doubles, containing the the hessian of the solution.
  	//
  	//   Description
  	//   Search the minimum of an unconstrained optimization problem specified by :
  	//   Find the minimum of f(x) such that 
  	//
  	//   <latex>
  	//    \begin{eqnarray}
  	//    &\mbox{min}_{x}
  	//    & f(x)\\
  	//    \end{eqnarray}
  	//   </latex>
  	//
  	//   The routine calls Ipopt for solving the Un-constrained Optimization problem, Ipopt is a library written in C++.
  	//
  	// The options allows the user to set various parameters of the Optimization problem. 
  	// It should be defined as type "list" and contains the following fields.
	// <itemizedlist>
	//   <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "Gradient", ---, "Hessian", ---);</listitem>
	//   <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
	//   <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
	//   <listitem>Gradient : a function, representing the gradient function of the Objective in Vector Form.</listitem>
	//   <listitem>Hessian : a function, representing the hessian function of the Objective in Symmetric Matrix Form.</listitem>
	//   <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
	// </itemizedlist>
	//
	// The exitflag allows to know the status of the optimization which is given back by Ipopt.
	// <itemizedlist>
	//   <listitem>exitflag=0 : Optimal Solution Found </listitem>
	//   <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
	//   <listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
	//   <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
	//   <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
	//   <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
	// </itemizedlist>
	//
	// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
	//
	// The output data structure contains detailed informations about the optimization process. 
	// It has type "struct" and contains the following fields.
	// <itemizedlist>
	//   <listitem>output.Iterations: The number of iterations performed during the search</listitem>
	//   <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
	//   <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
	//   <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
	// </itemizedlist>
	//
  	// Examples
  	//     //Find x in R^2 such that it minimizes the Rosenbrock function 
  	//     //f = 100*(x2 - x1^2)^2 + (1-x1)^2
  	//     //Objective function to be minimised
  	//     function y= f(x)
  	//   	    y= 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
  	//     endfunction
  	//	 //Starting point  
  	//     x0=[-1,2];
  	//	 //Gradient of objective function
  	//     function y= fGrad(x)
  	//   	     y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)];
  	//     endfunction
  	//	 //Hessian of Objective Function
  	//     function y= fHess(x)
  	//   	     y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ];
  	//     endfunction
  	//     //Options
  	//     options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
  	//     //Calling Ipopt
  	//     [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
	// // Press ENTER to continue
  	//
  	// Examples
  	//      //Find x in R^2 such that the below function is minimum
  	//      //f = x1^2 + x2^2
  	//      //Objective function to be minimised
  	//      function y= f(x)
  	//   	     y= x(1)^2 + x(2)^2;
  	//      endfunction
  	//	  //Starting point  
  	//      x0=[2,1];
  	//      //Calling Ipopt  
  	//      [xopt,fopt]=fminunc(f,x0)
	// // Press ENTER to continue
  	//
  	// Examples
  	//     //The below problem is an unbounded problem:
  	//     //Find x in R^2 such that the below function is minimum
  	//     //f = - x1^2 - x2^2
  	//     //Objective function to be minimised
  	//     function y= f(x)
  	//        y= -x(1)^2 - x(2)^2;
  	//     endfunction
  	//	 //Starting point  
  	//     x0=[2,1];
  	//	 //Gradient of objective function
  	//     function y= fGrad(x)
  	//   	     y= [-2*x(1),-2*x(2)];
  	//     endfunction
  	//	 //Hessian of Objective Function
  	//     function y= fHess(x)
  	//   	     y= [-2,0;0,-2];
  	//     endfunction
    //     //Options
  	//     options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", fGrad, "Hessian", fHess);
  	//    //Calling Ipopt  
  	//     [xopt,fopt,exitflag,output,gradient,hessian]=fminunc(f,x0,options)
  	// Authors
  	// R.Vidyadhar , Vignesh Kannan
    

	//To check the number of input and output arguments
   	[lhs , rhs] = argn();
	
	//To check the number of arguments given by the user
   	if ( rhs<2 | rhs>5 ) then
    		errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2 or 5"), "fminunc", rhs);
    		error(errmsg)
   	end
 
	//Storing the 1st and 2nd Input Parameters  
   	fun = varargin(1);
   	x0 = varargin(2);
      
	//To check whether the 1st Input argument(fun) is a function or not
   	if (type(fun) ~= 13 & type(fun) ~= 11) then
   		errmsg = msprintf(gettext("%s: Expected function for Objective "), "fminunc");
   		error(errmsg);
   	end
   
	//To check whether the 2nd Input argument(x0) is a vector/scalar
   	if (type(x0) ~= 1) then
   		errmsg = msprintf(gettext("%s: Expected Vector/Scalar for Starting Point"), "fminunc");
   		error(errmsg);
  	end
   
	//To check and convert the 2nd Input argument(x0) to a row vector 
   	if((size(x0,1)~=1) & (size(x0,2)~=1)) then
   		errmsg = msprintf(gettext("%s: Expected Row Vector or Column Vector for x0 (Initial Value) "), "fminunc", rhs);
   		error(errmsg);
   	else
   		if(size(x0,2)==1) then
   			x0=x0';		//Converting x0 to a row vector, if it is a column vector
   		else 
   	 		x0=x0;		//Retaining the same, if it is already a row vector
   		end   	 	
        	s=size(x0);	
   	end
   

  	//To check the match between f (1st Parameter) and x0 (2nd Parameter)
   	if(execstr('init=fun(x0)','errcatch')==21) then
		errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fminunc");
   		error(errmsg);
	end
	
	//Converting the User defined Objective function into Required form (Error Detectable)
   	function [y,check] = f(x)
   		if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27)
			y=0;
			check=1;
		else
			y=fun(x);
			if (isreal(y)==%F) then
				y=0;
				check=1;
  			else
				check=0;
			end
		end
	endfunction
   
	//To check whether options has been entered by user   
   	if ( rhs<3  ) then
      		param = list();
       else
      		param =varargin(3); //Storing the 3rd Input Parameter in an intermediate list named 'param'
    
   	end
   
	//If options has been entered, then check its type for 'list'   
   	if (type(param) ~= 15) then
   		errmsg = msprintf(gettext("%s: 3rd Input parameter should be a list (ie. Options) "), "fminunc");
   		error(errmsg);
   	end
   
	//If options has been entered, then check whether an even number of entires has been entered   
   	if (modulo(size(param),2)) then
		errmsg = msprintf(gettext("%s: Size of parameters should be even"), "fminunc");
		error(errmsg);
   	end
   	
   	//Defining a function to calculate Gradient or Hessian if the respective user entry is OFF 
   	function [y,check]=gradhess(x,t)
		if t==1 then	//To return Gradient
			if(execstr('y=numderivative(fun,x)','errcatch')==10000)
				y=0;
				check=1;
			else
				y=numderivative(fun,x);
				if (isreal(y)==%F) then
					y=0;
					check=1;
  				else
					check=0;
				end
			end			
		else		//To return Hessian
			if(execstr('[grad,y]=numderivative(fun,x)','errcatch')==10000)
				y=0;
				check=1;
			else
				[grad,y]=numderivative(fun,x);
				if (isreal(y)==%F) then
					y=0;
					check=1;
  				else
					check=0;
				end	
			end
		end
   	endfunction

	//To set default values for options, if user doesn't enter options
   	options = list("MaxIter", [3000], "CpuTime", [600]);

	//Flags to check whether Gradient is "ON"/"OFF" and Hessian is "ON"/"OFF" 
   	flag1=0;
   	flag2=0;
   	fGrad=[];
   	fGrad1=[];
   	fHess=[];
   	fHess1=[];
 
	//To check the user entry for options and store it
   	for i = 1:(size(param))/2
       	select convstr(param(2*i-1),'l')
    		case "maxiter" then
          			options(2*i) = param(2*i);    //Setting the maximum number of iterations as per user entry
       		case "cputime" then
          			options(2*i) = param(2*i);    //Setting the maximum CPU time as per user entry
        	case "gradient" then
					flag1 = 1;
        			fGrad = param(2*i);        				      
        	case "hessian" then
        			flag2 = 1;
        			fHess = param(2*i);
        	else
    	     	 	errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fminbnd", param(2*i-1));
    	      		error(errmsg)      	
    		end
   	end
   
	
  //To check for correct input of Gradient and Hessian functions from the user	     	
   if (flag1==1) then
   		if (type(fGrad) ~= 13 & type(fGrad) ~= 11) then
  			errmsg = msprintf(gettext("%s: Expected function for Gradient of Objective"), "fminunc");
   			error(errmsg);
   		end
   		
   		if(execstr('samplefGrad=fGrad(x0)','errcatch')==21)
			errmsg = msprintf(gettext("%s: Gradient function of Objective and x0 did not match"), "fminunc");
   			error(errmsg);
		end
		
		samplefGrad=fGrad(x0);
		
		if (size(samplefGrad,1)==s(2) & size(samplefGrad,2)==1) then
		elseif (size(samplefGrad,1)==1 & size(samplefGrad,2)==s(2)) then
		elseif (size(samplefGrad,1)~=1 & size(samplefGrad,2)~=1) then
   			errmsg = msprintf(gettext("%s: Wrong Input for Objective Gradient function(3rd Parameter)---->Row Vector function is Expected"), "fminunc");
   			error(errmsg);
   		end
   		
   		function [y,check] = fGrad1(x)
   			if(execstr('y=fGrad(x)','errcatch')==32 | execstr('y=fGrad(x)','errcatch')==27)
				y = 0;
				check=1;
			else
				y=fGrad(x);
				if (isreal(y)==%F) then
					y = 0;
					check=1;
  				else
					check=0;
				end
			end
  		endfunction
   	end
   	if (flag2==1) then
   		if (type(fHess) ~= 13 & type(fHess) ~= 11) then
  			errmsg = msprintf(gettext("%s: Expected function for Hessian of Objective"), "fminunc");
   			error(errmsg);
   		end
   		
   		if(execstr('samplefHess=fHess(x0)','errcatch')==21)
			errmsg = msprintf(gettext("%s: Hessian function of Objective and x0 did not match"), "fminunc");
   			error(errmsg);
		end
		
		samplefHess=fHess(x0);
		
   		if(size(samplefHess,1)~=s(2) | size(samplefHess,2)~=s(2)) then
   			errmsg = msprintf(gettext("%s: Wrong Input for Objective Hessian function(3rd Parameter)---->Symmetric Matrix function is Expected "), "fminunc");
   			error(errmsg);
   		end
   		
   		function [y,check] = fHess1(x)
   			if(execstr('y=fHess(x)','errcatch')==32 | execstr('y=fHess(x)','errcatch')==27)
				y = 0;
				check=1;
			else
				y=fHess(x);
				if (isreal(y)==%F) then
					y = 0;
					check=1;
  				else
					check=0;
				end
			end
  		endfunction
   	end

        //Calling the Ipopt function for solving the above problem
	[xopt,fopt,status,iter,cpu,obj_eval,dual,gradient, hessian1] = solveminuncp(f,gradhess,flag1,fGrad1,flag2,fHess1,x0,options);
   
	//Calculating the values for output
   	xopt = xopt';
   	exitflag = status;
   	output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[]);
   	output.Iterations = iter;
    	output.Cpu_Time = cpu;
    	output.Objective_Evaluation = obj_eval;
    	output.Dual_Infeasibility = dual;
    
    //Converting hessian of order (1 x (numberOfVariables)^2) received from Ipopt to order (numberOfVariables x numberOfVariables)
    s=size(gradient)
    for i =1:s(2)
    	for j =1:s(2)
			hessian(i,j)= hessian1(j+((i-1)*s(2)))
		end
    end


	//In the cases of the problem not being solved, return NULL to the output matrices
	if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then
		xopt=[]
		fopt=[]
		output = struct("Iterations", [],"Cpu_Time",[]);
		output.Iterations = iter;
    		output.Cpu_Time = cpu;
    		gradient=[]
		hessian=[]
	end
		
	
    //To print output message
    select status
    
    	case 0 then
        	printf("\nOptimal Solution Found.\n");
    	case 1 then
        	printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
    	case 2 then
       		printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
    	case 3 then
        	printf("\nStop at Tiny Step\n");
    	case 4 then
        	printf("\nSolved To Acceptable Level\n");
    	case 5 then
        	printf("\nConverged to a point of local infeasibility.\n");
    	case 6 then
        	printf("\nStopping optimization at current point as requested by user.\n");
    	case 7 then
        	printf("\nFeasible point for square problem found.\n");
    	case 8 then 
        	printf("\nIterates diverging; problem might be unbounded.\n");
    	case 9 then
        	printf("\nRestoration Failed!\n");
    	case 10 then
        	printf("\nError in step computation (regularization becomes too large?)!\n");
    	case 12 then
        	printf("\nProblem has too few degrees of freedom.\n");
    	case 13 then
        	printf("\nInvalid option thrown back by Ipopt\n");
    	case 14 then
        	printf("\nNot enough memory.\n");
    	case 15 then
        	printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
    	else
        	printf("\nInvalid status returned. Notify the Toolbox authors\n");
        	break;
    	end
    	

endfunction