1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Authors: Animesh Baranawal
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [x,fval,maxfval,exitflag,output,lambda] = fminimax(varargin)
// Solves minimax constraint problem
//
// Calling Sequence
// xopt = fminimax(fun,x0)
// xopt = fminimax(fun,x0,A,b)
// xopt = fminimax(fun,x0,A,b,Aeq,beq)
// xopt = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
// xopt = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun)
// xopt = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlinfun,options)
// [xopt, fval] = fminimax(.....)
// [xopt, fval, maxfval]= fminimax(.....)
// [xopt, fval, maxfval, exitflag]= fminimax(.....)
// [xopt, fval, maxfval, exitflag, output]= fminimax(.....)
// [xopt, fval, maxfval, exitflag, output, lambda]= fminimax(.....)
//
// Parameters
// fun: The function to be minimized. fun is a function that accepts a vector x and returns a vector F, the objective functions evaluated at x.
// x0 : a vector of double, contains initial guess of variables.
// A : a matrix of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// b : a vector of double, represents the linear coefficients in the inequality constraints A⋅x ≤ b.
// Aeq : a matrix of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// beq : a vector of double, represents the linear coefficients in the equality constraints Aeq⋅x = beq.
// lb : a vector of double, contains lower bounds of the variables.
// ub : a vector of double, contains upper bounds of the variables.
// nonlinfun: function that computes the nonlinear inequality constraints c⋅x ≤ 0 and nonlinear equality constraints c⋅x = 0.
// xopt : a vector of double, the computed solution of the optimization problem.
// fopt : a double, the value of the function at x.
// maxfval: a 1x1 matrix of doubles, the maximum value in vector fval
// exitflag : The exit status. See below for details.
// output : The structure consist of statistics about the optimization. See below for details.
// lambda : The structure consist of the Lagrange multipliers at the solution of problem. See below for details.
//
// Description
// fminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
//
// <latex>
// \min_{x} \max_{i} F_{i}(x)\: \textrm{such that} \:\begin{cases}
// & c(x) \leq 0 \\
// & ceq(x) = 0 \\
// & A.x \leq b \\
// & Aeq.x = beq \\
// & minmaxLb \leq x \leq minmaxUb
// \end{cases}
// </latex>
//
// Currently, fminimax calls fmincon which uses the ip-opt algorithm.
//
// max-min problems can also be solved with fminimax, using the identity
//
// <latex>
// \max_{x} \min_{i} F_{i}(x) = -\min_{x} \max_{i} \left( -F_{i}(x) \right)
// </latex>
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
// <itemizedlist>
// <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "GradCon", ---);</listitem>
// <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
// <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
// <listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
// <listitem>GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 & m3 are number of non-linear inequality and equality constraints respectively.</listitem>
// <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
// </itemizedlist>
//
// The objective function must have header :
// <programlisting>
// F = fun(x)
// </programlisting>
// where x is a n x 1 matrix of doubles and F is a m x 1 matrix of doubles where m is the total number of objective functions inside F.
// On input, the variable x contains the current point and, on output, the variable F must contain the objective function values.
//
// By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of minmaxObjfun. In case the GradObj option is off and GradConstr option is on, fminimax approximates minmaxObjfun gradient using numderivative toolbox.
//
// If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
//
// Furthermore, we must enable the "GradObj" option with the statement :
// <programlisting>
// minimaxOptions = list("GradObj",fGrad);
// </programlisting>
// This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function. Note that, fGrad should be mentioned in the form of N x n where n is the number of variables, N is the number of functions in objective function.
//
// The constraint function must have header :
// <programlisting>
// [c, ceq] = confun(x)
// </programlisting>
// where x is a n x 1 matrix of dominmaxUbles, c is a 1 x nni matrix of doubles and ceq is a 1 x nne matrix of doubles (nni : number of nonlinear inequality constraints, nne : number of nonlinear equality constraints).
// On input, the variable x contains the current point and, on output, the variable c must contain the nonlinear inequality constraints and ceq must contain the nonlinear equality constraints.
//
// By default, the gradient options for fminimax are turned off and and fmincon does the gradient opproximation of confun. In case the GradObj option is on and GradCons option is off, fminimax approximates confun gradient using numderivative toolbox.
//
// If we can provide exact gradients, we should do so since it improves the convergence speed of the optimization algorithm.
//
// Furthermore, we must enable the "GradCon" option with the statement :
// <programlisting>
// minimaxOptions = list("GradCon",confunGrad);
// </programlisting>
// This will let fminimax know that the exact gradient of the objective function is known, so that it can change the calling sequence to the objective function.
//
// The constraint derivative function must have header :
// <programlisting>
// [dc,dceq] = confungrad(x)
// </programlisting>
// where dc is a nni x n matrix of doubles and dceq is a nne x n matrix of doubles.
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
// <itemizedlist>
// <listitem>exitflag=0 : Optimal Solution Found </listitem>
// <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
// <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
// <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
// </itemizedlist>
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>output.Iterations: The number of iterations performed during the search</listitem>
// <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
// <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
// <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
// </itemizedlist>
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
// <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
// <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
// <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
// <listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
// <listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
// </itemizedlist>
//
// Examples
// // A basic case :
// // we provide only the objective function and the nonlinear constraint
// // function
// function f = myfun(x)
// f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304; //Objectives
// f(2)= -x(1)^2 - 3*x(2)^2;
// f(3)= x(1) + 3*x(2) -18;
// f(4)= -x(1) - x(2);
// f(5)= x(1) + x(2) - 8;
// endfunction
// // The initial guess
// x0 = [0.1,0.1];
// // The expected solution : only 4 digits are guaranteed
// xopt = [4 4]
// fopt = [0 -64 -2 -8 0]
// maxfopt = 0
// // Run fminimax
// [x,fval,maxfval,exitflag,output,lambda] = fminimax(myfun, x0)
// // Press ENTER to continue
//
// Examples
// // A case where we provide the gradient of the objective
// // functions and the Jacobian matrix of the constraints.
// // The objective function and its gradient
// function f = myfun(x)
// f(1)= 2*x(1)^2 + x(2)^2 - 48*x(1) - 40*x(2) + 304;
// f(2)= -x(1)^2 - 3*x(2)^2;
// f(3)= x(1) + 3*x(2) -18;
// f(4)= -x(1) - x(2);
// f(5)= x(1) + x(2) - 8;
// endfunction
// // Defining gradient of myfun
// function G = myfungrad(x)
// G = [ 4*x(1) - 48, -2*x(1), 1, -1, 1;
// 2*x(2) - 40, -6*x(2), 3, -1, 1; ]'
// endfunction
// // The nonlinear constraints and the Jacobian
// // matrix of the constraints
// function [c,ceq] = confun(x)
// // Inequality constraints
// c = [1.5 + x(1)*x(2) - x(1) - x(2), -x(1)*x(2) - 10]
// // No nonlinear equality constraints
// ceq=[]
// endfunction
// // Defining gradient of confungrad
// function [DC,DCeq] = cgrad(x)
// // DC(:,i) = gradient of the i-th constraint
// // DC = [
// // Dc1/Dx1 Dc1/Dx2
// // Dc2/Dx1 Dc2/Dx2
// // ]
// DC= [
// x(2)-1, -x(2)
// x(1)-1, -x(1)
// ]'
// DCeq = []'
// endfunction
// // Test with both gradient of objective and gradient of constraints
// minimaxOptions = list("GradObj",myfungrad,"GradCon",cgrad);
// // The initial guess
// x0 = [0,10];
// // The expected solution : only 4 digits are guaranteed
// xopt = [0.92791 7.93551]
// fopt = [6.73443 -189.778 6.73443 -8.86342 0.86342]
// maxfopt = 6.73443
// // Run fminimax
// [x,fval,maxfval,exitflag,output] = fminimax(myfun,x0,[],[],[],[],[],[], confun, minimaxOptions)
// Authors
// Animesh Baranawal
//
// Check number of input and output arguments
[minmaxLhs,minmaxRhs] = argn()
Checkrhs("fminimax", minmaxRhs, [2 4 6 8 9 10])
Checklhs("fminimax", minmaxLhs, 1:7)
// Proper initialisation of objective function
minmaxObjfun = varargin(1)
Checktype("fminimax", minmaxObjfun, "minmaxObjfun", 1, "function")
// Proper initialisation of starting point
minmaxStartpoint = varargin(2)
Checktype("fminimax", minmaxStartpoint, "minmaxStartpoint", 2, "constant")
minmaxNumvar = size(minmaxStartpoint,"*")
Checkvector("fminimax", minmaxStartpoint, "minmaxStartpoint", 2, minmaxNumvar)
minmaxStartpoint = minmaxStartpoint(:)
// Proper initialisation of A and b
if(minmaxRhs < 3) then // if A and b are not provided, declare as empty
minmaxA = []
minmaxB = []
else
minmaxA = varargin(3)
minmaxB = varargin(4)
end
Checktype("fminimax", minmaxA, "A", 3, "constant")
Checktype("fminimax", minmaxB, "b", 4, "constant")
// Check if A and b of proper dimensions
if(minmaxA <> [] & minmaxB == []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix A is empty, but the column vector b is not empty"), "fminimax", 3, 4)
error(errmsg)
end
if(minmaxA == [] & minmaxB <> []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix A is not empty, but the column vector b is empty"), "fminimax", 3, 4)
error(errmsg)
end
minmaxNumrowA = size(minmaxA,"r")
if(minmaxA <> []) then
Checkdims("fminimax", minmaxA, "A", 3, [minmaxNumrowA minmaxNumvar])
Checkvector("fminimax", minmaxB, "b", 4, minmaxNumrowA)
minmaxB = minmaxB(:)
end
// Proper initialisation of Aeq and beq
if(minmaxRhs < 5) then // if Aeq and beq are not provided, declare as empty
minmaxAeq = []
minmaxBeq = []
else
minmaxAeq = varargin(5)
minmaxBeq = varargin(6)
end
Checktype("fminimax", minmaxAeq, "Aeq", 5, "constant")
Checktype("fminimax", minmaxBeq, "beq", 6, "constant")
// Check if Aeq and beq of proper dimensions
if(minmaxAeq <> [] & minmaxBeq == []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix Aeq is empty, but the column vector beq is not empty"), "fminimax", 5, 6)
error(errmsg)
end
if(minmaxAeq == [] & minmaxBeq <> []) then
errmsg = msprintf(gettext("%s: Incompatible input arguments #%d and #%d: matrix Aeq is not empty, but the column vector beq is empty"), "fminimax", 5, 6)
error(errmsg)
end
minmaxNumrowAeq = size(minmaxAeq,"r")
if(minmaxAeq <> []) then
Checkdims("fminimax", minmaxAeq, "Aeq", 5, [minmaxNumrowAeq minmaxNumvar])
Checkvector("fminimax", minmaxBeq, "beq", 6, minmaxNumrowAeq)
minmaxBeq = minmaxBeq(:)
end
// Proper initialisation of minmaxLb and minmaxUb
if(minmaxRhs < 7) then // if minmaxLb and minmaxUb are not provided, declare as empty
minmaxLb = []
minmaxUb = []
else
minmaxLb = varargin(7)
minmaxUb = varargin(8)
end
Checktype("fminimax", minmaxLb, "lb", 7, "constant")
Checktype("fminimax", minmaxUb, "ub", 8, "constant")
// Check dimensions of minmaxLb and minmaxUb
if(minmaxLb <> []) then
Checkvector("fminimax", minmaxLb, "lb", 7, minmaxNumvar)
minmaxLb = minmaxLb(:)
end
if(minmaxUb <> []) then
Checkvector("fminimax", minmaxUb, "ub", 8, minmaxNumvar)
minmaxUb = minmaxUb(:)
end
// Proper Initialisation of minmaxNonlinfun
if(minmaxRhs < 9) then // if minmaxNonlinfun is not provided, declare as empty
minmaxNonlinfun = []
else
minmaxNonlinfun = varargin(9)
end
// fmincon library of scilab gives error when 'c' component of minmaxNonlinfun empty
// add a trivial case of -5 <= 0 to c to bypass this error
if(minmaxNonlinfun == []) then
function [c,ceq] = t(z)
c = []
ceq = []
endfunction
minmaxNonlinfun = t
end
Checktype("fminimax", minmaxNonlinfun, "nonlinfun", 9, "function")
//To check, Whether minimaxOptions is been entered by user
if ( minmaxRhs<10 ) then
minmaxUserOptions = list();
else
minmaxUserOptions = varargin(10); //Storing the 3rd Input minmaxUserOptionseter in intermediate list named 'minmaxUserOptions'
end
//If minimaxOptions is entered then checking its type for 'list'
if (type(minmaxUserOptions) ~= 15) then
errmsg = msprintf(gettext("%s: minimaxOptions (10th parameter) should be a list"), "fminimax");
error(errmsg);
end
//If minimaxOptions is entered then checking whether even number of entires are entered
if (modulo(size(minmaxUserOptions),2)) then
errmsg = msprintf(gettext("%s: Size of minimaxOptions (list) should be even"), "fminimax");
error(errmsg);
end
//Flags to check whether Gradient is "ON"/"OFF" and store values of user options
flag1=0;
flag2=0;
minmaxMaxIter = 3000
minmaxCPU = 600
minmaxFGrad=[];
minmaxCGrad=[];
//To check the User Entry for Options and storing it
for i = 1:(size(minmaxUserOptions))/2
select convstr(minmaxUserOptions(2*i-1),'l')
case "maxiter" then
minmaxIter = minmaxUserOptions(2*i); //Setting the Maximum Iteration as per user entry
case "cputime" then
minmaxCPU = minmaxUserOptions(2*i); //Setting the Maximum CPU Time as per user entry
case "gradobj" then
if (type(minmaxUserOptions(2*i))==10) then
if (convstr(minmaxUserOptions(2*i))=="off") then
flag1 = 0;
else
errmsg = msprintf(gettext("%s: Unrecognized String %s entered for the option- %s."), "fminimax",minmaxUserOptions(2*i), minmaxUserOptions(2*i-1));
error(errmsg);
end
else
flag1 = 1;
minmaxFGrad = minmaxUserOptions(2*i);
end
case "gradcon" then
if (type(minmaxUserOptions(2*i))==10) then
if (convstr(minmaxUserOptions(2*i))=="off") then
flag2 = 0;
else
errmsg = msprintf(gettext("%s: Unrecognized String %s entered for the option- %s."), "fminimax",minmaxUserOptions(2*i), minmaxUserOptions(2*i-1));
error(errmsg);
end
else
flag2 = 1;
minmaxCGrad = minmaxUserOptions(2*i);
end
else
errmsg = msprintf(gettext("%s: Unrecognized minmaxUserOptionseter name ''%s''."), "fminimax", minmaxUserOptions(2*i-1));
error(errmsg)
end
end
// Checking if minmaxFGrad and minmaxCGrad are functions
if (flag1==1) then
if (type(minmaxFGrad) ~= 11 & type(minmaxFGrad) ~= 13) then
errmsg = msprintf(gettext("%s: Expected function for Gradient of Objective"), "fminimax");
error(errmsg);
end
end
if (flag2==1) then
if (type(minmaxCGrad) ~= 11 & type(minmaxCGrad) ~= 13) then
errmsg = msprintf(gettext("%s: Expected function for Gradient of Nonlinfun"), "fminimax");
error(errmsg);
end
end
// Reformulating the problem fminimax to fmincon
minmaxObjfunval = minmaxObjfun(minmaxStartpoint)
minmaxStartpoint(minmaxNumvar+1) = max(minmaxObjfunval)
if(minmaxA <> []) then
minmaxA = [minmaxA, zeros(minmaxNumrowA,1)]
end
if(minmaxAeq <> []) then
minmaxAeq = [minmaxAeq, zeros(minmaxNumrowAeq,1)]
end
if(minmaxLb <> []) then
minmaxLb(minmaxNumvar+1) = -%inf
end
if(minmaxUb <> []) then
minmaxUb(minmaxNumvar+1) = +%inf
end
// function handle defining the additional inequalities
function temp = minmaxAddIneq(z)
temp = minmaxObjfun(z) - z(minmaxNumvar+1)
endfunction
// function handle defining new objective function
function newfunc = newObjfun(z)
newfunc = z(minmaxNumvar+1)
endfunction
// function handle defining add_ineq derivative using numderivative
function func = minmaxObjDer(z)
func = numderivative(minmaxAddIneq,z)
endfunction
// function handle defining minmaxNonlinfun derivative using numderivative
function [dc,dceq] = minmaxNonlinDer(z)
// function handle extracting c and ceq components from minmaxNonlinfun
function foo = minmaxC(z)
[foo,tmp1] = minmaxNonlinfun(z)
foo = foo'
endfunction
function foo = minmaxCEQ(z)
[tmp1,foo] = minmaxNonlinfun(z)
foo = foo'
endfunction
dc = numderivative(minmaxC,z)
dceq = numderivative(minmaxCEQ,z)
endfunction
// function handle defining new minmaxNonlinfun function
function [nc,nceq] = newNonlinfun(z)
[nc,nceq] = minmaxNonlinfun(z)
// add inequalities of the form Fi(x) - y <= 0
tmp = [minmaxObjfun(z) - z(minmaxNumvar+1)]'
nc = [nc, tmp]
endfunction
// function handle defining new gradient function for non-linear constraints
// this function passed when the gradient feature is on
function [dnc,dnceq] = newCGrad(z)
// if constraint gradient present use it
if(flag2 == 1) then
[dnc, dnceq] = minmaxCGrad(z)
dnc = [dnc, zeros(size(dnc,'r'),1)]
dnceq = [dnceq, zeros(size(dnceq,'r'),1)]
else
// else use numderivative method to calculate gradient of constraints
[dnc, dnceq] = minmaxNonlinDer(z)
end
// if objective gradient is present use it
if(flag1 == 1) then
derObjfun = minmaxFGrad(z)
mderObjfun = [derObjfun, -1*ones(size(derObjfun,'r'),1)]
dnc = [dnc; mderObjfun]
else
// else use numderivative to calculate gradient of set of obj functions
derObjfun = minmaxObjDer(z)
dnc = [dnc; derObjfun]
end
endfunction
// to be passed as minimaxOptions to fmincon
if(flag1 == 1 | flag2 == 1) then
minmaxPassOptions = list("MaxIter", minmaxMaxIter, "CpuTime", minmaxCPU, "GradCon", newCGrad)
[x,fval,exitflag,output,lambda] = ...
fmincon(newObjfun,minmaxStartpoint,minmaxA,minmaxB,minmaxAeq,minmaxBeq,minmaxLb,minmaxUb,newNonlinfun,minmaxPassOptions)
x = x(1:minmaxNumvar)
fval = minmaxObjfun(x)
maxfval = max(fval)
else
minmaxPassOptions = list("MaxIter", minmaxMaxIter, "CpuTime", minmaxCPU)
[x,fval,exitflag,output,lambda] = ...
fmincon(newObjfun,minmaxStartpoint,minmaxA,minmaxB,minmaxAeq,minmaxBeq,minmaxLb,minmaxUb,newNonlinfun,minmaxPassOptions)
x = x(1:minmaxNumvar)
fval = minmaxObjfun(x)
maxfval = max(fval)
end
endfunction
|