1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: R.Vidyadhar & Vignesh Kannan
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [xopt,fopt,exitflag,output,lambda,gradient,hessian] = fmincon (varargin)
// Solves a multi-variable constrainted optimization problem
//
// Calling Sequence
// xopt = fmincon(f,x0,A,b)
// xopt = fmincon(f,x0,A,b,Aeq,beq)
// xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub)
// xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc)
// xopt = fmincon(f,x0,A,b,Aeq,beq,lb,ub,nlc,options)
// [xopt,fopt] = fmincon(.....)
// [xopt,fopt,exitflag]= fmincon(.....)
// [xopt,fopt,exitflag,output]= fmincon(.....)
// [xopt,fopt,exitflag,output,lambda]=fmincon(.....)
// [xopt,fopt,exitflag,output,lambda,gradient]=fmincon(.....)
// [xopt,fopt,exitflag,output,lambda,gradient,hessian]=fmincon(.....)
//
// Parameters
// f : a function, representing the objective function of the problem
// x0 : a vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
// A : a matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints
// b : a vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1)
// Aeq : a matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints
// beq : a vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1)
// lb : a vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
// ub : a vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of Variables
// nlc : a function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints are defined first as a single row vector (c), followed by non-linear equality constraints as another single row vector (ceq). Refer Example for definition of Constraint function.
// options : a list, containing the option for user to specify. See below for details.
// xopt : a vector of doubles, cointating the computed solution of the optimization problem
// fopt : a scalar of double, containing the the function value at x
// exitflag : a scalar of integer, containing the flag which denotes the reason for termination of algorithm. See below for details.
// output : a structure, containing the information about the optimization. See below for details.
// lambda : a structure, containing the Lagrange multipliers of lower bound, upper bound and constraints at the optimized point. See below for details.
// gradient : a vector of doubles, containing the Objective's gradient of the solution.
// hessian : a matrix of doubles, containing the Lagrangian's hessian of the solution.
//
// Description
// Search the minimum of a constrained optimization problem specified by :
// Find the minimum of f(x) such that
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & f(x) \\
// & \text{subject to} & A*x \leq b \\
// & & Aeq*x \ = beq\\
// & & c(x) \leq 0\\
// & & ceq(x) \ = 0\\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
//
// The routine calls Ipopt for solving the Constrained Optimization problem, Ipopt is a library written in C++.
//
// The options allows the user to set various parameters of the Optimization problem.
// It should be defined as type "list" and contains the following fields.
// <itemizedlist>
// <listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "Hessian", ---, "GradCon", ---);</listitem>
// <listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
// <listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
// <listitem>GradObj : a function, representing the gradient function of the Objective in Vector Form.</listitem>
// <listitem>Hessian : a function, representing the hessian function of the Lagrange in Symmetric Matrix Form with Input parameters x, Objective factor and Lambda. Refer Example for definition of Lagrangian Hessian function.</listitem>
// <listitem>GradCon : a function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate Matrix (ceqg of size m2 X n or as an empty) where m2 & m3 are number of non-linear inequality and equality constraints respectively.</listitem>
// <listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
// </itemizedlist>
//
// The exitflag allows to know the status of the optimization which is given back by Ipopt.
// <itemizedlist>
// <listitem>exitflag=0 : Optimal Solution Found </listitem>
// <listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
// <listitem>exitflag=3 : Stop at Tiny Step.</listitem>
// <listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
// <listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
// </itemizedlist>
//
// For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
//
// The output data structure contains detailed informations about the optimization process.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>output.Iterations: The number of iterations performed during the search</listitem>
// <listitem>output.Cpu_Time: The total cpu-time spend during the search</listitem>
// <listitem>output.Objective_Evaluation: The number of Objective Evaluations performed during the search</listitem>
// <listitem>output.Dual_Infeasibility: The Dual Infeasiblity of the final soution</listitem>
// <listitem>output.Message: The output message for the problem</listitem>
// </itemizedlist>
//
// The lambda data structure contains the Lagrange multipliers at the end
// of optimization. In the current version the values are returned only when the the solution is optimal.
// It has type "struct" and contains the following fields.
// <itemizedlist>
// <listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
// <listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
// <listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
// <listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
// <listitem>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</listitem>
// <listitem>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</listitem>
// </itemizedlist>
//
// Examples
// //Find x in R^2 such that it minimizes:
// //f(x)= -x1 -x2/3
// //x0=[0,0]
// //constraint-1 (c1): x1 + x2 <= 2
// //constraint-2 (c2): x1 + x2/4 <= 1
// //constraint-3 (c3): x1 - x2 <= 2
// //constraint-4 (c4): -x1/4 - x2 <= 1
// //constraint-5 (c5): -x1 - x2 <= -1
// //constraint-6 (c6): -x1 + x2 <= 2
// //constraint-7 (c7): x1 + x2 = 2
// //Objective function to be minimised
// function y=f(x)
// y=-x(1)-x(2)/3;
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[0 , 0];
// A=[1,1 ; 1,1/4 ; 1,-1 ; -1/4,-1 ; -1,-1 ; -1,1];
// b=[2;1;2;1;-1;2];
// Aeq=[1,1];
// beq=[2];
// lb=[];
// ub=[];
// nlc=[];
// //Gradient of objective function
// function y= fGrad(x)
// y= [-1,-1/3];
// endfunction
// //Hessian of lagrangian
// function y= lHess(x,obj,lambda)
// y= obj*[0,0;0,0]
// endfunction
// //Options
// options=list("GradObj", fGrad, "Hessian", lHess);
// //Calling Ipopt
// [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
// // Press ENTER to continue
//
// Examples
// //Find x in R^3 such that it minimizes:
// //f(x)= x1*x2 + x2*x3
// //x0=[0.1 , 0.1 , 0.1]
// //constraint-1 (c1): x1^2 - x2^2 + x3^2 <= 2
// //constraint-2 (c2): x1^2 + x2^2 + x3^2 <= 10
// //Objective function to be minimised
// function y=f(x)
// y=x(1)*x(2)+x(2)*x(3);
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[0.1 , 0.1 , 0.1];
// A=[];
// b=[];
// Aeq=[];
// beq=[];
// lb=[];
// ub=[];
// //Nonlinear constraints
// function [c,ceq]=nlc(x)
// c = [x(1)^2 - x(2)^2 + x(3)^2 - 2 , x(1)^2 + x(2)^2 + x(3)^2 - 10];
// ceq = [];
// endfunction
// //Gradient of objective function
// function y= fGrad(x)
// y= [x(2),x(1)+x(3),x(2)];
// endfunction
// //Hessian of the Lagrange Function
// function y= lHess(x,obj,lambda)
// y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,-2,0;0,0,2] + lambda(2)*[2,0,0;0,2,0;0,0,2]
// endfunction
// //Gradient of Non-Linear Constraints
// function [cg,ceqg] = cGrad(x)
// cg=[2*x(1) , -2*x(2) , 2*x(3) ; 2*x(1) , 2*x(2) , 2*x(3)];
// ceqg=[];
// endfunction
// //Options
// options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
// //Calling Ipopt
// [x,fval,exitflag,output] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
// // Press ENTER to continue
//
// Examples
// //The below problem is an unbounded problem:
// //Find x in R^3 such that it minimizes:
// //f(x)= -(x1^2 + x2^2 + x3^2)
// //x0=[0.1 , 0.1 , 0.1]
// // x1 <= 0
// // x2 <= 0
// // x3 <= 0
// //Objective function to be minimised
// function y=f(x)
// y=-(x(1)^2+x(2)^2+x(3)^2);
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[0.1 , 0.1 , 0.1];
// A=[];
// b=[];
// Aeq=[];
// beq=[];
// lb=[];
// ub=[0,0,0];
// //Options
// options=list("MaxIter", [1500], "CpuTime", [500]);
// //Calling Ipopt
// [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,[],options)
// // Press ENTER to continue
//
// Examples
// //The below problem is an infeasible problem:
// //Find x in R^3 such that in minimizes:
// //f(x)=x1*x2 + x2*x3
// //x0=[1,1,1]
// //constraint-1 (c1): x1^2 <= 1
// //constraint-2 (c2): x1^2 + x2^2 <= 1
// //constraint-3 (c3): x3^2 <= 1
// //constraint-4 (c4): x1^3 = 0.5
// //constraint-5 (c5): x2^2 + x3^2 = 0.75
// // 0 <= x1 <=0.6
// // 0.2 <= x2 <= inf
// // -inf <= x3 <= 1
// //Objective function to be minimised
// function y=f(x)
// y=x(1)*x(2)+x(2)*x(3);
// endfunction
// //Starting point, linear constraints and variable bounds
// x0=[1,1,1];
// A=[];
// b=[];
// Aeq=[];
// beq=[];
// lb=[0 0.2,-%inf];
// ub=[0.6 %inf,1];
// //Nonlinear constraints
// function [c,ceq]=nlc(x)
// c=[x(1)^2-1,x(1)^2+x(2)^2-1,x(3)^2-1];
// ceq=[x(1)^3-0.5,x(2)^2+x(3)^2-0.75];
// endfunction
// //Gradient of objective function
// function y= fGrad(x)
// y= [x(2),x(1)+x(3),x(2)];
// endfunction
// //Hessian of the Lagrange Function
// function y= lHess(x,obj,lambda)
// y= obj*[0,1,0;1,0,1;0,1,0] + lambda(1)*[2,0,0;0,0,0;0,0,0] + ..
// lambda(2)*[2,0,0;0,2,0;0,0,0] +lambda(3)*[0,0,0;0,0,0;0,0,2] + ..
// lambda(4)*[6*x(1),0,0;0,0,0;0,0,0] + lambda(5)*[0,0,0;0,2,0;0,0,2];
// endfunction
// //Gradient of Non-Linear Constraints
// function [cg,ceqg] = cGrad(x)
// cg = [2*x(1),0,0;2*x(1),2*x(2),0;0,0,2*x(3)];
// ceqg = [3*x(1)^2,0,0;0,2*x(2),2*x(3)];
// endfunction
// //Options
// options=list("MaxIter", [1500], "CpuTime", [500], "GradObj", fGrad, "Hessian", lHess,"GradCon", cGrad);
// //Calling Ipopt
// [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(f, x0,A,b,Aeq,beq,lb,ub,nlc,options)
// // Press ENTER to continue
// Authors
// R.Vidyadhar , Vignesh Kannan
//To check the number of input and output arguments
[lhs , rhs] = argn();
//To check the number of arguments given by the user
if ( rhs<4 | rhs>10 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,9,10"), "fmincon", rhs);
error(errmsg)
end
if (rhs==5 | rhs==7) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,9,10s"), "fmincon", rhs);
error(errmsg)
end
//Storing the Input Parameters
fun = varargin(1);
x0 = varargin(2);
A = varargin(3);
b = varargin(4);
Aeq = [];
beq = [];
lb = [];
ub = [];
nlc = [];
if (rhs>4) then
Aeq = varargin(5);
beq = varargin(6);
end
if (rhs>6) then
lb = varargin(7);
ub = varargin(8);
end
if (rhs>8) then
nlc = varargin(9);
end
//To check whether the 1st Input argument (fun) is a function or not
Checktype("fmincon", fun, "f", 1, "function");
//To check whether the 2nd Input argument (x0) is a vector/scalar
Checktype("fmincon", x0, "x0", 2, "constant");
//To check and convert the 2nd Input argument (x0) to a row vector
if((size(x0,1)~=1) & (size(x0,2)~=1)) then
errmsg = msprintf(gettext("%s: Expected Row Vector or Column Vector for x0 (Starting Point) or Starting Point cannot be Empty"), "fmincon");
error(errmsg);
end
if(size(x0,2)==1) then
x0=x0'; //Converting x0 to a row vector, if it is a column vector
else
x0=x0; //Retaining the same, if it is already a row vector
end
s=size(x0);
//To check the match between fun (1st Parameter) and x0 (2nd Parameter)
if(execstr('init=fun(x0)','errcatch')==21) then
errmsg = msprintf(gettext("%s: Objective function and x0 did not match"), "fmincon");
error(errmsg);
end
//Converting the User defined Objective function into Required form (Error Detectable)
function [y,check] = f(x)
if(execstr('y=fun(x)','errcatch')==32 | execstr('y=fun(x)','errcatch')==27)
y=0;
check=1;
else
y=fun(x);
if (isreal(y)==%F) then
y=0;
check=1;
else
check=0;
end
end
endfunction
//To check whether the 3rd Input argument (A) is a Matrix/Vector
Checktype("fmincon", A, "A", 3, "constant");
//To check for correct size of A(3rd paramter)
if(size(A,2)~=s(2) & size(A,2)~=0) then
errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear inequality constraints X No of Variables) or an Empty Matrix for Linear Inequality Constraint coefficient Matrix A"), "fmincon");
error(errmsg);
end
s1=size(A);
//To check whether the 4th Input argument (b) is a vector/scalar
Checktype("fmincon", b, "b", 4, "constant");
//To check for the correct size of b (4th paramter) and convert it into a column vector which is required for Ipopt
if(s1(2)==0) then
if(size(b,2)~=0) then
errmsg = msprintf(gettext("%s: As Linear Inequality Constraint coefficient Matrix A (3rd parameter) is empty, b (4th Parameter) should also be empty"), "fmincon");
error(errmsg);
end
else
if((size(b,1)~=1) & (size(b,2)~=1)) then
errmsg = msprintf(gettext("%s: Expected Non empty Row/Column Vector for b (4th Parameter) for your Inputs "), "fmincon");
error(errmsg);
elseif(size(b,1)~=s1(1) & size(b,2)==1) then
errmsg = msprintf(gettext("%s: Expected Column Vector (number of linear inequality constraints X 1) for b (4th Parameter) "), "fmincon");
error(errmsg);
elseif(size(b,1)==s1(1) & size(b,2)==1) then
b=b;
elseif(size(b,1)==1 & size(b,2)~=s1(1)) then
errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of linear inequality constraints) for b (4th Parameter) "), "fmincon");
error(errmsg);
elseif(size(b,1)==1 & size(b,2)==s1(1)) then
b=b';
end
end
//To check whether the 5th Input argument (Aeq) is a matrix/vector
Checktype("fmincon", Aeq, "Aeq", 5, "constant");
//To check for the correct size of Aeq (5th paramter)
if(size(Aeq,2)~=s(2) & size(Aeq,2)~=0) then
errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear equality constraints X No of Variables) or an Empty Matrix for Linear Equality Constraint coefficient Matrix Aeq"), "fmincon");
error(errmsg);
end
s2=size(Aeq);
//To check whether the 6th Input argument(beq) is a vector/scalar
Checktype("fmincon", beq, "beq", 6, "constant");
//To check for the correct size of beq(6th paramter) and convert it into a column vector which is required for Ipopt
if(s2(2)==0) then
if(size(beq,2)~=0) then
errmsg = msprintf(gettext("%s: As Linear Equality Constraint coefficient Matrix Aeq (5th parameter) is empty, beq (6th Parameter) should also be empty"), "fmincon");
error(errmsg);
end
else
if((size(beq,1)~=1) & (size(beq,2)~=1)) then
errmsg = msprintf(gettext("%s: Expected Non empty Row/Column Vector for beq (6th Parameter)"), "fmincon");
error(errmsg);
elseif(size(beq,1)~=s2(1) & size(beq,2)==1) then
errmsg = msprintf(gettext("%s: Expected Column Vector (number of linear equality constraints X 1) for beq (6th Parameter) "), "fmincon");
error(errmsg);
elseif(size(beq,1)==s2(1) & size(beq,2)==1) then
beq=beq;
elseif(size(beq,1)==1 & size(beq,2)~=s2(1)) then
errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of linear equality constraints) for beq (6th Parameter) "), "fmincon");
error(errmsg);
elseif(size(beq,1)==1 & size(beq,2)==s2(1)) then
beq=beq';
end
end
//To check whether the 7th Input argument (lb) is a vector/scalar
Checktype("fmincon", lb, "lb", 7, "constant");
//To check for the correct size and data of lb (7th paramter) and convert it into a column vector as required by Ipopt
if (size(lb,2)==0) then
lb = repmat(-%inf,1,s(2));
end
if (size(lb,1)~=1) & (size(lb,2)~=1) then
errmsg = msprintf(gettext("%s: Lower Bound (7th Parameter) should be a vector"), "fmincon");
error(errmsg);
elseif(size(lb,1)~=s(2) & size(lb,2)==1) then
errmsg = msprintf(gettext("%s: Expected Column Vector (number of Variables X 1) for lower bound (7th Parameter) "), "fmincon");
error(errmsg);
elseif(size(lb,1)==s(2) & size(lb,2)==1) then
lb=lb;
elseif(size(lb,1)==1 & size(lb,2)~=s(2)) then
errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of Variables) for lower bound (7th Parameter) "), "fmincon");
error(errmsg);
elseif(size(lb,1)==1 & size(lb,2)==s(2)) then
lb=lb';
end
//To check whether the 8th Input argument (ub) is a vector/scalar
Checktype("fmincon", ub, "ub", 8, "constant");
//To check for the correct size and data of ub (8th paramter) and convert it into a column vector as required by Ipopt
if (size(ub,2)==0) then
ub = repmat(%inf,1,s(2));
end
if (size(ub,1)~=1)& (size(ub,2)~=1) then
errmsg = msprintf(gettext("%s: Upper Bound (8th Parameter) should be a vector"), "fmincon");
error(errmsg);
elseif(size(ub,1)~=s(2) & size(ub,2)==1) then
errmsg = msprintf(gettext("%s: Expected Column Vector (number of Variables X 1) for upper bound (8th Parameter) "), "fmincon");
error(errmsg);
elseif(size(ub,1)==s(2) & size(ub,2)==1) then
ub=ub;
elseif(size(ub,1)==1 & size(ub,2)~=s(2)) then
errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of Variables) for upper bound (8th Parameter) "), "fmincon");
error(errmsg);
elseif(size(ub,1)==1 & size(ub,2)==s(2)) then
ub=ub';
end
//To check the contents of lb & ub (7th & 8th Parameter)
for i = 1:s(2)
if (lb(i) == %inf) then
errmsg = msprintf(gettext("%s: Value of Lower Bound can not be infinity"), "fmincon");
error(errmsg);
end
if (ub(i) == -%inf) then
errmsg = msprintf(gettext("%s: Value of Upper Bound can not be negative infinity"), "fmincon");
error(errmsg);
end
if(ub(i)-lb(i)<=1e-6) then
errmsg = msprintf(gettext("%s: Difference between Upper Bound and Lower bound should be atleast > 10^-6 for variable number= %d "), "fmincon", i);
error(errmsg)
end
end
//To check whether the 10th Input argument (nlc) is a function or an empty matrix
if (type(nlc) == 1 & size(nlc,2)==0 ) then
addnlc=[];
addnlc1=[];
no_nlc=0;
no_nlic=0;
no_nlec=0;
elseif (type(nlc) == 13 | type(nlc) == 11) then
if(execstr('[sample_c,sample_ceq] = nlc(x0)','errcatch')==21)
errmsg = msprintf(gettext("%s: Non-Linear Constraint function(9th Parameter) and x0(2nd Parameter) did not match"), "fmincon");
error(errmsg);
end
[sample_c,sample_ceq] = nlc(x0);
if (size(sample_c,1)~=1 & size(sample_c,1)~=0) then
errmsg = msprintf(gettext("%s: Definition of c in Non-Linear Constraint function(9th Parameter) should be in the form of Row Vector or Empty Vector"), "fmincon");
error(errmsg)
end
if (size(sample_ceq,1)~=1 & size(sample_ceq,1)~=0) then
errmsg = msprintf(gettext("%s: Definition of ceq in Non-Linear Constraint function(9th Parameter) should be in the form of Row Vector or Empty Vector"), "fmincon");
error(errmsg)
end
no_nlic = size(sample_c,2);
no_nlec = size(sample_ceq,2);
no_nlc = no_nlic + no_nlec;
//Constructing a single output variable function for nlc
function y = addnlc(x)
[c,ceq] = nlc(x);
y = [c';ceq'];
endfunction
//To check the addnlc function
if(execstr('sample_allcon = addnlc(x0)','errcatch')==21)
errmsg = msprintf(gettext("%s: Non-Linear Constraint function(9th Parameter) and x0(2nd Parameter) did not match"), "fmincon");
error(errmsg);
end
sample_allcon = addnlc(x0);
if (size(sample_allcon,1)==0 & size(sample_allcon,2)==0) then
elseif (size(sample_allcon,1)~=no_nlc | size(sample_allcon,2)~=1) then
errmsg = msprintf(gettext("%s: Please check the Non-Linear Constraint function (9th Parameter) function"), "fmincon");
error(errmsg)
end
//Constructing a nlc function with error deduction
function [y,check] = addnlc1(x)
if(execstr('y = addnlc(x)','errcatch')==32 | execstr('y = addnlc(x)','errcatch')==27)
y = 0;
check=1;
else
y = addnlc(x);
if (isreal(y)==%F) then
y = 0;
check=1;
else
check=0;
end
end
endfunction
else
errmsg = msprintf(gettext("%s: Non Linear Constraint (9th Parameter) should be a function or an Empty Matrix"), "fmincon");
error(errmsg)
end
//To check whether options has been entered by the user
if ( rhs<10 ) then
param = list();
else
param =varargin(10); //Storing the 3rd Input Parameter in an intermediate list named 'param'
end
//If options has been entered, then check its type for 'list'
Checktype("fmincon", param, "options", 10, "list");
//If options has been entered, then check whether an even number of entires has been entered
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of Options (list) should be even"), "fmincon");
error(errmsg);
end
//To set default values for options, if user doesn't enter options
options = list("MaxIter", [3000], "CpuTime", [600]);
//Flags to check whether Gradient is "ON"/"OFF" and Hessian is "ON"/"OFF"
flag1=0;
flag2=0;
flag3=0;
//Function for Gradient and Hessian
fGrad=[];
fGrad1=[];
lHess=[];
lHess1=[];
cGrad=[];
addcGrad=[];
addcGrad1=[];
//To check the user entry for options and storing it
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case "maxiter" then
if (type(param(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for Maximum Iteration should be a Constant"), "fmincon");
error(errmsg);
else
options(2) = param(2*i); //Setting the maximum number of iterations as per user entry
end
case "cputime" then
if (type(param(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for Maximum Cpu-time should be a Constant"), "fmincon");
error(errmsg);
else
options(4) = param(2*i); //Setting the maximum CPU time as per user entry
end
case "gradobj" then
if (type(param(2*i))==10) then
if (convstr(param(2*i))=="off") then
flag1 =0;
else
errmsg = msprintf(gettext("%s: Unrecognized String [%s] entered for the option- %s."), "fmincon",param(2*i), param(2*i-1));
error(errmsg);
end
else
flag1 = 1;
fGrad = param(2*i);
end
case "hessian" then
if (type(param(2*i))==10) then
if (convstr(param(2*i))=="off") then
flag2 =0;
else
errmsg = msprintf(gettext("%s: Unrecognized String [%s] entered for the option- %s."), "fmincon",param(2*i), param(2*i-1));
error(errmsg);
end
else
flag2 = 1;
lHess = param(2*i);
end
case "gradcon" then
if (type(param(2*i))==10) then
if (convstr(param(2*i))=="off") then
flag3 =0;
else
errmsg = msprintf(gettext("%s: Unrecognized String [%s] entered for the option- %s."), "fmincon",param(2*i), param(2*i-1));
error(errmsg);
end
else
flag3 = 1;
cGrad = param(2*i);
end
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "fmincon", param(2*i-1));
error(errmsg);
end
end
//To check for correct input of Objective Gradient function from the user
if (flag1==1) then
Checktype("fmincon", fGrad, "fGrad", 10, "function");
if(execstr('sample_fGrad=fGrad(x0)','errcatch')==21)
errmsg = msprintf(gettext("%s: Gradient function of Objective and x0 did not match "), "fmincon");
error(errmsg);
end
sample_fGrad=fGrad(x0);
if (size(sample_fGrad,1)==s(2) & size(sample_fGrad,2)==1) then
elseif (size(sample_fGrad,1)==1 & size(sample_fGrad,2)==s(2)) then
else
errmsg = msprintf(gettext("%s: Wrong Input for Objective Gradient function(3rd Parameter)---->Row Vector function of size [1 X %d] is Expected"), "fmincon",s(2));
error(errmsg);
end
end
//To check for correct input of Lagrangian Hessian function from the user
if (flag2==1) then
Checktype("fmincon", lHess, "lHess", 10, "function");
if(execstr('sample_lHess=lHess(x0,1,1:no_nlc)','errcatch')==21)
errmsg = msprintf(gettext("%s: Hessian function of Objective and x0 did not match "), "fmincon");
error(errmsg);
end
sample_lHess=lHess(x0,1,1:no_nlc);
if(size(sample_lHess,1)~=s(2) | size(sample_lHess,2)~=s(2)) then
errmsg = msprintf(gettext("%s: Wrong Input for Objective Hessian function(10th Parameter)---->Symmetric Matrix function is Expected "), "fmincon");
error(errmsg);
end
end
//To check for correct input of Constraint Gradient function from the user
if (flag3==1) then
Checktype("fmincon", cGrad, "cGrad", 10, "function");
if(execstr('[sample_cGrad,sample_ceqg]=cGrad(x0)','errcatch')==21)
errmsg = msprintf(gettext("%s: Gradient function of Constraint and x0 did not match "), "fmincon");
error(errmsg);
end
[sample_cGrad,sample_ceqg]=cGrad(x0);
if (size(sample_cGrad,2)==0) then
elseif (size(sample_cGrad,1)~=no_nlic | size(sample_cGrad,2)~=s(2)) then
errmsg = msprintf(gettext("%s: Definition of (cGrad) in Non-Linear Constraint function(10th Parameter) should be in the form of (m X n) or Empty Matrix where m is number of Non- linear inequality constraints and n is number of Variables"), "fmincon");
error(errmsg);
end
if (size(sample_ceqg,2)==0) then
elseif (size(sample_ceqg,1)~=no_nlec | size(sample_ceqg,2)~=s(2)) then
errmsg = msprintf(gettext("%s: Definition of (ceqg) in Non-Linear Constraint function(10th Parameter) should be in the form of (m X n) or Empty Matrix where m is number of Non- linear equality constraints and n is number of Variables"), "fmincon");
error(errmsg);
end
function y = addcGrad(x)
[sample_cGrad,sample_ceqg] = cGrad(x);
y = [sample_cGrad;sample_ceqg];
endfunction
sample_addcGrad=addcGrad(x0);
if(size(sample_addcGrad,1)~=no_nlc | size(sample_addcGrad,2)~=s(2)) then
errmsg = msprintf(gettext("%s: Wrong Input for Constraint Gradient function(10th Parameter) (Refer Help)"), "fmincon");
error(errmsg);
end
end
//Defining an inbuilt Objective gradient function
function [y,check] = fGrad1(x)
if flag1==1 then
if(execstr('y=fGrad(x)','errcatch')==32 | execstr('y=fGrad(x)','errcatch')==27)
y = 0;
check=1;
else
y=fGrad(x);
if (isreal(y)==%F) then
y = 0;
check=1;
else
check=0;
end
end
else
if(execstr('y=numderivative(fun,x)','errcatch')==10000)
y=0;
check=1;
else
y=numderivative(fun,x);
if (isreal(y)==%F) then
y=0;
check=1;
else
check=0;
end
end
end
endfunction
//Defining an inbuilt Lagrangian Hessian function
function [y,check] = lHess1(x,obj,lambda)
if flag2==1 then
if(execstr('y=lHess(x,obj,lambda)','errcatch')==32 | execstr('y=lHess(x,obj,lambda)','errcatch')==27)
y = 0;
check=1;
else
y=lHess(x,obj,lambda);
if (isreal(y)==%F) then
y = 0;
check=1;
else
check=0;
end
end
else
if(execstr('[grad,y1]=numderivative(fun,x)','errcatch')==10000)
check1=1;
else
[grad,y1]=numderivative(fun,x);
if (isreal(y1)==%F) then
check1=1;
else
check1=0;
end
end
if check1==0 then
if no_nlc~=0 then
if(execstr('[grad,y2]=numderivative(addnlc,x)','errcatch')==10000)
check2=1;
else
[grad,y2]=numderivative(addnlc,x);
if (isreal(y2)==%F) then
check2=1;
else
check2=0;
end
end
if check2==0 then
y2=matrix(y2, no_nlc*s(2)*s(2),1)
for i = 1:s(2)*s(2)
y(i)=0;
for j = 1:no_nlc
y(i)= y(i) + lambda(j)*y2((i-1)*no_nlc+j);
end
end
for i = 1:s(2)*s(2)
y(i) = y(i)+ obj*y1(i);
end
check=0;
else
check=1;
end
else
check=0;
for i = 1:s(2)*s(2)
y(i) = obj*y1(i);
end
end
else
check=1;
y=[0];
end
end
endfunction
//Defining an inbuilt Constraint gradient function
function [y,check] = addcGrad1(x)
if flag3==1 then
if(execstr('y=addcGrad(x)','errcatch')==32 | execstr('y=addcGrad(x)','errcatch')==27)
y = 0;
check=1;
else
y=addcGrad(x);
if (isreal(y)==%F) then
y = 0;
check=1;
else
check=0;
end
end
else
if(execstr('y=numderivative(addnlc,x)','errcatch')==10000)
y=0;
check=1;
else
y=numderivative(addnlc,x);
if (isreal(y)==%F) then
y=0;
check=1;
else
check=0;
end
end
end
endfunction
//Creating a Dummy Variable for IPopt use
empty=[0];
//Calling the Ipopt function for solving the above problem
[xopt,fopt,status,iter,cpu,obj_eval,dual,lambda1,zl,zu,gradient,hessian1] = solveminconp(f,A,b,Aeq,beq,lb,ub,no_nlc,no_nlic,addnlc1,fGrad1,lHess1,addcGrad1,x0,options,empty)
//Calculating the values for the output
xopt = xopt';
exitflag = status;
output = struct("Iterations", [],"Cpu_Time",[],"Objective_Evaluation",[],"Dual_Infeasibility",[],"Message","");
output.Iterations = iter;
output.Cpu_Time = cpu;
output.Objective_Evaluation = obj_eval;
output.Dual_Infeasibility = dual;
lambda = struct("lower", zl,"upper",zu,"ineqlin",[],"eqlin",[],"ineqnonlin",[],"eqnonlin",[]);
if (no_nlic ~= 0) then
for i = 1:no_nlic
lambda.ineqnonlin (i) = lambda1(i)
end
lambda.ineqnonlin = lambda.ineqnonlin'
end
if (no_nlec ~= 0) then
j=1;
for i = no_nlic+1 : no_nlc
lambda.eqnonlin (j) = lambda1(i)
j= j+1;
end
lambda.eqnonlin = lambda.eqnonlin'
end
if (Aeq ~=[]) then
j=1;
for i = no_nlc+1 : no_nlc + size(Aeq,1)
lambda.eqlin (j) = lambda1(i)
j= j+1;
end
lambda.eqlin = lambda.eqlin'
end
if (A ~=[]) then
j=1;
for i = no_nlc+ size(Aeq,1)+ 1 : no_nlc + size(Aeq,1) + size(A,1)
lambda.ineqlin (j) = lambda1(i)
j= j+1;
end
lambda.ineqlin = lambda.ineqlin'
end
//Converting hessian of order (1 x (numberOfVariables)^2) received from Ipopt to order (numberOfVariables x numberOfVariables)
s1=size(gradient)
for i =1:s1(2)
for j =1:s1(2)
hessian(i,j)= hessian1(j+((i-1)*s1(2)))
end
end
//In the cases of the problem not being solved, return NULL to the output matrices
if( status~=0 & status~=1 & status~=2 & status~=3 & status~=4 & status~=7 ) then
xopt=[];
fopt=[];
output = struct("Iterations", [],"Cpu_Time",[],"Message","");
output.Iterations = iter;
output.Cpu_Time = cpu;
lambda = struct("lower",[],"upper",[],"ineqlin",[],"eqlin",[],"ineqnonlin",[],"eqnonlin",[]);
gradient=[];
hessian=[];
end
//To print output message
select status
case 0 then
printf("\nOptimal Solution Found.\n");
output.Message="Optimal Solution Found";
case 1 then
printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
output.Message="Maximum Number of Iterations Exceeded. Output may not be optimal";
case 2 then
printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
output.Message="Maximum CPU Time exceeded. Output may not be optimal";
case 3 then
printf("\nStop at Tiny Step\n");
output.Message="Stop at Tiny Step";
case 4 then
printf("\nSolved To Acceptable Level\n");
output.Message="Solved To Acceptable Level";
case 5 then
printf("\nConverged to a point of local infeasibility.\n");
output.Message="Converged to a point of local infeasibility";
case 6 then
printf("\nStopping optimization at current point as requested by user.\n");
output.Message="Stopping optimization at current point as requested by user";
case 7 then
printf("\nFeasible point for square problem found.\n");
output.Message="Feasible point for square problem found";
case 8 then
printf("\nIterates diverging; problem might be unbounded.\n");
output.Message="Iterates diverging; problem might be unbounded";
case 9 then
printf("\nRestoration Failed!\n");
output.Message="Restoration Failed!";
case 10 then
printf("\nError in step computation (regularization becomes too large?)!\n");
output.Message="Error in step computation (regularization becomes too large?)!";
case 11 then
printf("\nProblem has too few degrees of freedom.\n");
output.Message="Problem has too few degrees of freedom";
case 12 then
printf("\nInvalid option thrown back by Ipopt\n");
output.Message="Invalid option thrown back by Ipopt";
case 13 then
printf("\nNot enough memory.\n");
output.Message="Not enough memory";
case 15 then
printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors.\n");
output.Message="INTERNAL ERROR: Unknown SolverReturn value - Notify Ipopt Authors";
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
output.Message="Invalid status returned. Notify the Toolbox authors";
break;
end
endfunction
|