1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
function [x,y,s,z,info,status] = ecos(varargin)
// Solves conic optimization problems with integer and boolean constraints.
//
// Calling Sequence
// x = ecos(c,G,h,dims)
// x = ecos(c,G,h,dims,A,b)
// x = ecos(c,G,h,dims,A,b,options)
// [x,y,s,z,info,status] = ecos( ... )
//
// Parameters
// c : a vector of double, contains coefficients of the variables in the objective.
// G : a matrix of double, represents the linear coefficients in the inequality constraints G⋅x ≤ h with respect to cone K.
// h : a vector of double, represents the linear coefficients in the inequality constraints G⋅x ≤ h with respect to cone K.
// dims : a list containing the number of n-dimensional positive orthant(l),the second order cones(q) and exponential cones(e).
// A : a matrix of double, represents the linear coefficients in the equality constraints A⋅x = b.
// b : a vector of double, represents the linear coefficients in the equality constraints A⋅x = b.
// options : a list containing the parameters to be set.
// x : a vector of double, the primal solution variable of the optimization problem.
// y : a vector of double, the dual variables fo equality constraints of the optimization problem.
// s : a vector of double, the slack for inequality constraints of the optimization problem.
// z : a vector of double, the dula varibale for inequality constraints of the optimization problem.
// info : a struct defining different parameters of the ecos solver. See below for details.
// status : The status returns the solver status after the optimization process. See below for details.
//
// Description
// Search the minimum of a conic constrained mixed integer programming optimization problem specified by :
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & C^T⋅x \\
// & \text{subject to}& A⋅x = b \\
// & & G⋅x \preceq_K h \\
// & & x_i \in \{0,1\}, i \in \!\, bool_vars\
// & & x_j \in \!\, \mathbb{Z}, i \in \!\, int_vars\\
// \end{eqnarray}
// </latex>
//
// Examples
// // Objective function
// c = [-750 -1000];
// // Constraint inequality matrix LHS
// G = [
// 1 1;
// 1 2;
// 4 3;
// ];
// // Constraint inequality matrix RHS
// h = [10 15 25]';
// // Constraint equality matrix LHS
// A = [
// 0.5 1
// ];
// // Constraint equality matrix RHS
// b=[7.5];
// // Dimension of positive orthant
// l = [3];
// q = [];
// e = [];
// dims=list("l",l,"q",q,"e",e)
// //Calling ecos
// [x,y,s,z,info,status] =ecos(c,G,h,dims,A,b);
// Examples
//
// // Objective function
// c = [0 0 0 0 1];
// //Constraint inequality matrix LHS
// G = [
// 0.4167578 0.0562668 0. 0. 0.
// 2.1361961 -1.6402708 0. 0. 0.
// 1.7934356 0.8417474 0. 0. 0.
// 0. 0. 0.4167578 0.0562668 0.
// 0. 0. 2.1361961 -1.6402708 0.
// 0. 0. 1.7934356 0.8417474 0.
// 0. 0. 0. 0. -1.
// -1. 0. 0. 0. 0.
// 0. -1. 0. 0. 0.
// 0. 0. -1. 0. 0.
// 0. 0. 0. -1. 0.
// ];
// //Constraint inequality matrix RHS
// h = [0 0 0 0 0 0 0 0 0 0 0]';
// // Dimension of positive orthant
// l = [6];
// q = [5];
// e = [0]
// dims=list("l",l,"q",q,"e",e)
// [x,y,s,z,info,status] =ecos(c,G,h,dims);
// Author
// Georgey John
function [A1,b1,s0]=linconcheck(A,b,inputs_name)
//Function to check the linear inputs A,b and Aeq,beq
if(size(b,2)>1) then
errmsg = msprintf(gettext("%s: Expected Column vector of size (Number of constraints) for %s"), "ecos",inputs_name(2));
error(errmsg);
end
s0=size(A);
//To check for correct size of A
if(s0(2)==0) then
if(size(b,2)~=0) then
errmsg = msprintf(gettext("%s: As Linear Inequality Constraint coefficient Matrix %s is empty, %s should also be empty"), "ecos",inputs_name(1),inputs_name(2));
error(errmsg);
end
else
if((size(b,1)~=1) & (size(b,2)~=1)) then
errmsg = msprintf(gettext("%s: Expected Non empty Row/Column Vector for %s for your Inputs "), "ecos",inputs_name(2));
error(errmsg);
elseif(size(b,1)~=s0(1) & size(b,2)==1) then
errmsg = msprintf(gettext("%s: Expected Column Vector (number of linear inequality constraints X 1) for %s"), "ecos",inputs_name(2));
error(errmsg);
// elseif(size(b,1)==1 & size(b,2)~=s0(1)) then
// errmsg = msprintf(gettext("%s: Expected Row Vector (1 X number of linear inequality constraints) for %s"), "ecos",inputs_name(2));
// error(errmsg);
end
end
b1=b;
//To check for corrcet size of A
if(size(A,1)~=size(b,1) & size(A,2)~=0) then
errmsg = msprintf(gettext("%s: Expected Matrix of size (No of linear inequality constraints X No of Variables) or an Empty Matrix for Linear Inequality Constraint coefficient Matrix %s"), "ecos",inputs_name(1));
error(errmsg);
end
A1=A;
endfunction
[lhs ,rhs]=argn()
if ( rhs<4 | rhs>9 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,7,8 or 9"), "ecos", rhs);
error(errmsg);
end
if (rhs==5) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while it should be 4,6,8,10 or 11"), "ecos", rhs);
error(errmsg);
end
c = varargin(1);
G = varargin(2);
h = varargin(3);
dims = varargin(4);
A=[];Apr=[];Ajc=[];Air=[];
b=[];
param=list();
m=0,n=0,p=0;
if (rhs>4 & rhs<7) then
A = varargin(5);
b = varargin(6);
else
A=[];
b=[];
end
if (rhs ==7) then
param = varargin(7);
end
Checktype("ecos", c, "c", 1, "constant");
// Error check for objective matrix(c)
if (size(c,1)~=1) then
errmsg = msprintf(gettext("%s: c should be a row vector"), "ecos");
error(errmsg);
elseif (size(c,1)==0) then
errmsg = msprintf(gettext("%s: c cannot be empty"), "ecos");
error(errmsg);
end
s=size(c,2);
Checktype("ecos", G, "G", 2, "constant");
Checktype("ecos", h, "h", 3, "constant");
[m,n]=size(G);
// Error check and converting inequaity matrix(G) to CCS format required by ecos
if (n~=size(c,2)) then
errmsg = msprintf(gettext("%s: Number of columns of G and c do not match"), "ecos");
error(errmsg);
end
[G,h,s1]=linconcheck(G,h,["G","h"]);
[Gjc,Gir,Gpr] = sp2adj(sparse(G));
// Extracting values and Error checks for dims
Checktype("ecos", dims, "dims", 4, "list");
if (isempty(dims) | modulo(size(dims),2)) then
errmsg = msprintf(gettext("%s: dims cannot be empty and should be list of even size"), "ecos");
error(errmsg);
end
for i = 1:(size(dims))/2
select convstr(dims(2*i-1),'l')
case "l" then
Checktype("ecos", dims(2*i), "l", 4, "constant");
if (isempty(dims(2*i))) then
l=0;
elseif (dims(2*i)<0 | modulo(dims(2*i),1)) then
errmsg = msprintf(gettext("%s: l in dims should be a positive integer"), "ecos");
error(errmsg);
else
l=dims(2*i);
// if (prod(size(l))>1)) then
// errmsg = msprintf(gettext("%s: l in dims should be a positive integer"), "ecos");
// error(errmsg);
// end
end
case "q" then
Checktype("ecos", dims(2*i), "q", 4, "constant");
if (isempty(dims(2*i))) then
q=[];
elseif (dims(2*i)<0 | modulo(dims(2*i),1)) then
errmsg = msprintf(gettext("%s: q in dims should be a positive vector"), "ecos");
error(errmsg);
else
q=dims(2*i);
end
case "e" then
Checktype("ecos", dims(2*i), "e", 4, "constant");
if (isempty(dims(2*i))) then
e=0;
elseif (dims(2*i)<0 | modulo(dims(2*i),1)) then
errmsg = msprintf(gettext("%s: e in dims should be a positive integer"), "ecos");
error(errmsg);
else
e=dims(2*i);
// if (prod(size(e))>1)) then
// errmsg = msprintf(gettext("%s: e in dims should be a positive integer"), "ecos");
// error(errmsg);
// end
end
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "ecos", dims(2*i-1));
error(errmsg);
end
end
// Error check and converting equaity matrix(A) to CCS format required by ecos
if ((size(A,1)*size(b,1)==0) & (size(A,1)+size(b,1)~=0)) then
errmsg = msprintf(gettext("%s: One of %s and %s is an empty matrix"), "ecos","A","b");
error(errmsg);
end
if (size(A,1)~=0) then
Checktype("ecos", A, "A", 5, "constant");
Checktype("ecos", b, "b", 6, "constant");
[A,b,s2]=linconcheck(A,b,["A","b"]);
[Ajc,Air,Apr] = sp2adj(sparse(A));
[m2,p]= size(A);
if (n~=p) then
errmsg = msprintf(gettext("%s: Number of columns of G and A do not match"), "ecos");
error(errmsg);
end
if (p~=size(c,2)) then
errmsg = msprintf(gettext("%s: Number of columns of A and c do not match"), "ecos");
error(errmsg);
end
end
if (size(G,1)==0 & (size(h,1)==0)) then
if (size(A,1)==0 & (size(b,1)==0)) then
errmsg = msprintf(gettext("%s: At most one of the pair (G, h) or (A, b) is allowed to be absent"), "ecos");
error(errmsg);
end
end
// Extracting values and Error checks for options(param)
Checktype("ecos", param, "param", 1, "list");
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of Options (list) should be even"), "ecos");
error(errmsg);
end
option = list("maxiter", [100], "feastol", [1e-8],"reltol",[1e-8],"abstol",[1e-8],"feastol_inacc",[1e-4],"abstol_inacc",[5e-5],"reltol_inacc",[5e-5],"verbose",[0],"mi_max_iters",[1000],"mi_int_tol",[1e-4],"mi_abs_eps",[1e-6],"mi_rel_eps",[1e-6]);
for i = 1:(size(param))/2
select convstr(param(2*i-1),'l')
case "maxit" then
if (type(option(2*i))~=1 | modulo(option(2*i),1)) then
errmsg = msprintf(gettext("%s: Value for Maximum Iteration should be a Constant integer"), "ecos");
error(errmsg);
else
option(2) = param(2*i);
end
case "feastol" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for tolerance should be a Constant"), "ecos");
error(errmsg);
else
option(4) = param(2*i);
end
case "reltol" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for relative tolerance should be a Constant"), "ecos");
error(errmsg);
else
option(6) = param(2*i);
end
case "abstol" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for absolute tolerance should be a Constant"), "ecos");
error(errmsg);
else
option(8) = param(2*i);
end
case "feastol_inacc" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for tolerance with reduced precision should be a Constant"), "ecos");
error(errmsg);
else
option(10) = param(2*i);
end
case "reltol_inacc" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for relative tolerance with reduced precision should be a Constant"), "ecos");
error(errmsg);
else
option(12) = param(2*i);
end
case "abstol_inacc" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for absolute tolerance with reduced precision should be a Constant"), "ecos");
error(errmsg);
else
option(14) = param(2*i);
end
case "verbose" then
if (type(option(2*i))~=1 | modulo(option(2*i),1)) then
errmsg = msprintf(gettext("%s: Value for verbose level should be a Constant integer"), "ecos");
error(errmsg);
else
option(16) = param(2*i);
end
case "mi_max_iters" then
if (type(option(2*i))~=1 | modulo(option(2*i),1)) then
errmsg = msprintf(gettext("%s: Value for maximum branch and bound iterations should be a Constant integer"), "ecos");
error(errmsg);
else
option(18) = param(2*i);
end
case "mi_int_tol" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for integer tolerance should be a Constant"), "ecos");
error(errmsg);
else
option(20) = param(2*i);
end
case "mi_abs_eps" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for absolute tolerance between upper and lower bounds should be a Constant"), "ecos");
error(errmsg);
else
option(22) = param(2*i);
end
case "mi_rel_eps" then
if (type(option(2*i))~=1) then
errmsg = msprintf(gettext("%s: Value for relative tolerance between upper and lower bounds should be a Constant"), "ecos");
error(errmsg);
else
option(24) = param(2*i);
end
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name %s."), "ecos", param(2*i-1));
error(errmsg);
end
end
// number of second order cones is size of q
ncones = size(q,2);
//Converting form 1-based(Scilab) indexing to 0-based indexing(C)
Gjc=Gjc-1;
Gir=Gir-1;
if (p ~=0)
Ajc=Ajc-1;
Air=Air-1;
end
// Calling ecos
[x,y,info1,s,z]=solveecos(c,Gpr,int32(Gjc),int32(Gir),h,Apr,int32(Ajc),int32(Air),b,l,int32(q),e,option,m,n,p,ncones)
// Assigning output parameters
info=struct();
info.setup_time=info1(1);
info.solve_time = info1(2);
info.primal_objective_cost =info1(3);
info.dual_objective_cost =info1(4);
info.Normalized_primal_residual = info1(5);
info.Normalized_dual_residual = info1(6);
info.primal_infeasibile = info1(7);
info.dual_infeasibile = info1(8);
info.primal_infeasibility_measure = info1(9);
info.dual_infeasibility_measure = info1(10);
info.Complementarity_gap = info1(11);
info.Normalized_complementarity_gap = info1(12);
info.Iterations = info1(13);
info.exitflag = info1(14);
// Status
select info.exitflag
case 0 then
status='Optimal solution found';
case 1 then
status='Certificate of primal infeasibility found';
case 2 then
status='Certificate of dual infeasibility found';
case 10 then
status='Optimal solution found subject to reduced tolerances';
case 11 then
status='Certificate of primal infeasibility found subject to reduced tolerances';
case 12 then
status='Certificate of dual infeasibility found subject to reduced tolerances';
case -1 then
status='Maximum number of iterations reached';
case -2 then
status='Numerical problems (unreliable search direction)';
case -3 then
status='Numerical problems (slacks or multipliers outside cone)';
case -4 then
status='Interrupted by signal or CTRL-C';
case -7 then
status='Unknown problem in solver';
case -8 then
status='ecos setup error';
else
status='Unknown problem in toolbox,contact toolbox authors';
end
disp(status);
endfunction
|