summaryrefslogtreecommitdiff
path: root/help/en_US/scilab_en_US_help/lsqnonlin.html
blob: b0b6219413959d127847ae12b2222166dc557005 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
<html><head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>lsqnonlin</title>
    <style type="text/css" media="all">
      @import url("scilab_code.css");
      @import url("xml_code.css");
      @import url("c_code.css");
      @import url("style.css");
    </style>
  </head>
  <body>
    <div class="manualnavbar">
    <table width="100%"><tr>
      <td width="30%">
    	<span class="previous"><a href="lsqlin.html">&lt;&lt; lsqlin</a></span>

      </td>
      <td width="40%" class="center">
      	<span class="top"><a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a></span>

      </td>
      <td width="30%" class="next">
      	<span class="next"><a href="lsqnonneg.html">lsqnonneg &gt;&gt;</a></span>

      </td>
    </tr></table>
      <hr />
    </div>



    <span class="path"><a href="index.html">FOSSEE Optimization Toolbox</a> &gt;&gt; <a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a> &gt; lsqnonlin</span>

    <br /><br />
    <div class="refnamediv"><h1 class="refname">lsqnonlin</h1>
    <p class="refpurpose">Solves a non linear data fitting problems.</p></div>


<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
   <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqnonlin</span><span class="default">(</span><span class="default">fun</span><span class="default">,</span><span class="default">x0</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqnonlin</span><span class="default">(</span><span class="default">fun</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqnonlin</span><span class="default">(</span><span class="default">fun</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">options</span><span class="default">)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">resnorm</span><span class="default">] = </span><span class="functionid">lsqnonlin</span><span class="default">( ... )</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">resnorm</span><span class="default">,</span><span class="default">residual</span><span class="default">] = </span><span class="functionid">lsqnonlin</span><span class="default">( ... )</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">resnorm</span><span class="default">,</span><span class="default">residual</span><span class="default">,</span><span class="default">exitflag</span><span class="default">] = </span><span class="functionid">lsqnonlin</span><span class="default">( ... )</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">resnorm</span><span class="default">,</span><span class="default">residual</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lambda</span><span class="default">,</span><span class="default">gradient</span><span class="default">] = </span><span class="functionid">lsqnonlin</span><span class="default">( ... )</span></pre></div></div>

<div class="refsection"><h3 class="title">Input Parameters</h3>
   <dl><dt><span class="term">fun :</span>
      <dd><p class="para">A function, representing the objective function and gradient (if given) of the problem.</p></dd></dt>
   <dt><span class="term">x0 :</span>
      <dd><p class="para">A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where &#0039;n&#0039; is the number of variables.</p></dd></dt>
   <dt><span class="term">lb :</span>
      <dd><p class="para">A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where &#0039;n&#0039; is the number of variables.</p></dd></dt>
   <dt><span class="term">ub :</span>
      <dd><p class="para">A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where &#0039;n&#0039; is the number of variables.</p></dd></dt>
   <dt><span class="term">options :</span>
      <dd><p class="para">A list, containing the option for user to specify. See below for details.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Outputs</h3>
 <dl><dt><span class="term">xopt :</span>
      <dd><p class="para">A vector of doubles, containing the computed solution of the optimization problem.</p></dd></dt>
   <dt><span class="term">resnorm :</span>
      <dd><p class="para">A double, containing the objective value returned as a scalar value i.e. sum(fun(x).^2).</p></dd></dt>
   <dt><span class="term">residual :</span>
      <dd><p class="para">A vector of doubles, containing the solution of the objective function, returned as a vector i.e. fun(x).</p></dd></dt>
   <dt><span class="term">exitflag :</span>
      <dd><p class="para">An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</p></dd></dt>
   <dt><span class="term">output :</span>
      <dd><p class="para">A structure, containing the information about the optimization. See below for details.</p></dd></dt>
   <dt><span class="term">lambda :</span>
      <dd><p class="para">A structure, containing the Lagrange multipliers of the lower bounds, upper bounds and constraints at the optimized point. See below for details.</p></dd></dt>
   <dt><span class="term">gradient :</span>
      <dd><p class="para">A vector of doubles, containing the objective&#0039;s gradient of the solution.</p></dd></dt></dl></div>

<div class="refsection"><h3 class="title">Description</h3>
   <p class="para">Search the minimum of a constrained non-linear least square problem specified by :</p>
   <p class="para"><span><img src='./_LaTeX_lsqnonlin.xml_1.png' style='position:relative;top:20px;width:264px;height:48px'/></span></p>
   <p class="para">lsqnonlin calls fmincon, which calls Ipopt, an optimization library written in C++ to solve the non-linear least squares problem.</p>
   
   <p class="para">The options should be defined as type &#0034;list&#0034; and consist of the following fields:</p>
  <p class="para">options= list(&#0034;MaxIter&#0034;, [---], &#0034;CpuTime&#0034;, [---], &#0034;GradObj&#0034;, ---);</p>
   <p class="para"><ul class="itemizedlist"><li>MaxIter : A Scalar, specifying the maximum number of iterations that the solver should take.</li>
<li>CpuTime : A Scalar, specifying the maximum amount of CPU time in seconds that the solver should take.</li>
<li>GradObj : A string, representing whetherthe gradient function is on or off.</li></ul></p>
   <p class="para">The default values for the various items are given as:</p>
   <p class="para">Default Values : options = list(&#0034;MaxIter&#0034;, [3000], &#0034;CpuTime&#0034;, [600], &#0034;GradObj&#0034;, &#0034;off&#0034;);</p>
    <p class="para">The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<ul class="itemizedlist"><li>0 : Optimal Solution Found</li>
<li>1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</li>
<li>2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</li>
<li>3 : Stop at Tiny Step.</li>
<li>4 : Solved To Acceptable Level.</li>
<li>5 : Converged to a point of local infeasibility.</li></ul></p>
   <p class="para">For more details on exitflag, see the Ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/</p>
   <p class="para">The output data structure contains detailed information about the optimization process.
It is of type &#0034;struct&#0034; and contains the following fields.
<ul class="itemizedlist"><li>output.iterations: The number of iterations performed.</li>
<li>output.constrviolation: The max-norm of the constraint violation.</li></ul></p>
    <p class="para">The lambda data structure contains the Lagrange multipliers at the end of optimization. In the current version, the values are returned only when the the solution is optimal.
It has type &#0034;struct&#0034; and contains the following fields.
<ul class="itemizedlist"><li>lambda.lower: The Lagrange multipliers for the lower bound constraints.</li>
<li>lambda.upper: The Lagrange multipliers for the upper bound constraints.</li></ul></p>
   <p class="para"></p></div>
<p class="para">A few examples displaying the various functionalities of lsqnonlin have been provided below. You will find a series of problems and the appropriate code snippets to solve them.</p>
<div class="refsection"><h3 class="title">Example</h3>
     <p class="para">Here we solve a simple non-linear least square example taken from leastsq default present in scilab.</p>
   <p class="para">Find x in R^2 such that it minimizes:</p>
   <p class="para"><span><img src='./_LaTeX_lsqnonlin.xml_2.png' style='position:relative;top:9px;width:408px;height:74px'/></span></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// we have the m measures (ti, yi):</span>
<span class="scilabid">m</span> <span class="scilaboperator">=</span> <span class="scilabnumber">10</span><span class="scilabdefault">;</span>
<span class="scilabid">tm</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.5</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.75</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.0</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.5</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.75</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.0</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.5</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabid">ym</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.79</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.59</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.47</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.36</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.29</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.23</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.17</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.15</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.12</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.08</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// measure weights (here all equal to 1...)</span>
<span class="scilabid">wm</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://ones">ones</a><span class="scilabopenclose">(</span><span class="scilabid">m</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// and we want to find the parameters x such that the model fits the given</span>
<span class="scilabcomment">// data in the least square sense:</span>
<span class="scilabcomment">//</span>
<span class="scilabcomment">//  minimize  f(x) = sum_i  wm(i)^2 ( x(1)*exp(-x(2)*tm(i) - ym(i) )^2</span>
<span class="scilabcomment">// initial parameters guess</span>
<span class="scilabid">x0</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1.5</span> <span class="scilabdefault">;</span> <span class="scilabnumber">0.8</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// in the first examples, we define the function fun and dfun</span>
<span class="scilabcomment">// in scilab language</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">myfun</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">them</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">ym</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">wm</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span> <span class="scilaboperator">=</span> <span class="scilabinputoutputargs">wm</span><span class="scilaboperator">.*</span><span class="scilabopenclose">(</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><a class="scilabcommand" href="scilab://exp">exp</a><span class="scilabopenclose">(</span><span class="scilaboperator">-</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabid">tm</span><span class="scilabopenclose">)</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">ym</span> <span class="scilabopenclose">)</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">// the simplest call</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">gradient</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqnonlin</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">myfun</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Example</h3>
<p class="para">Here we build up on the previous example by adding upper and lower bounds to the variables.
We add the following bounds to the problem specified above:</p>
  <p class="para"><span><img src='./_LaTeX_lsqnonlin.xml_3.png' style='position:relative;top:17px;width:137px;height:42px'/></span></p>
    <p class="para"></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//A simple non-linear least square example taken from leastsq default present in scilab</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">yth</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">t</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span>  <span class="scilaboperator">=</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><a class="scilabcommand" href="scilab://exp">exp</a><span class="scilabopenclose">(</span><span class="scilaboperator">-</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">t</span><span class="scilabopenclose">)</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">// we have the m measures (ti, yi):</span>
<span class="scilabid">m</span> <span class="scilaboperator">=</span> <span class="scilabnumber">10</span><span class="scilabdefault">;</span>
<span class="scilabid">tm</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.5</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.75</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.0</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.5</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.75</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.0</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.5</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabid">ym</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.79</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.59</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.47</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.36</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.29</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.23</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.17</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.15</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.12</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.08</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// measure weights (here all equal to 1...)</span>
<span class="scilabid">wm</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://ones">ones</a><span class="scilabopenclose">(</span><span class="scilabid">m</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// and we want to find the parameters x such that the model fits the given</span>
<span class="scilabcomment">// data in the least square sense:</span>
<span class="scilabcomment">//</span>
<span class="scilabcomment">//  minimize  f(x) = sum_i  wm(i)^2 ( yth(tm(i),x) - ym(i) )^2</span>
<span class="scilabcomment">// initial parameters guess</span>
<span class="scilabid">x0</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1.5</span> <span class="scilabdefault">;</span> <span class="scilabnumber">0.8</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// in the first examples, we define the function fun and dfun</span>
<span class="scilabcomment">// in scilab language</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">myfun</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">tm</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">ym</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">wm</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span> <span class="scilaboperator">=</span> <span class="scilabinputoutputargs">wm</span><span class="scilaboperator">.*</span><span class="scilabopenclose">(</span> <span class="scilabfunctionid">yth</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">tm</span><span class="scilabdefault">,</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">ym</span> <span class="scilabopenclose">)</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">5</span> <span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">5</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">10</span><span class="scilabdefault">,</span> <span class="scilabnumber">10</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// the simplest call</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">gradient</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqnonlin</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">myfun</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Example</h3>
   <p class="para">In this example, we further enhance the functionality of lsqnonlin by setting input options. This provides us with the ability to control the solver parameters such as the maximum number of solver iterations and the max. CPU time allowed for the computation.</p>
  <p class="para"></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//A basic example taken from leastsq default present in scilab with gradient</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">yth</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">t</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span>  <span class="scilaboperator">=</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><a class="scilabcommand" href="scilab://exp">exp</a><span class="scilabopenclose">(</span><span class="scilaboperator">-</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">t</span><span class="scilabopenclose">)</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">// we have the m measures (ti, yi):</span>
<span class="scilabid">m</span> <span class="scilaboperator">=</span> <span class="scilabnumber">10</span><span class="scilabdefault">;</span>
<span class="scilabid">tm</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.5</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.75</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.0</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.5</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.75</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.0</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">2.5</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabid">ym</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.79</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.59</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.47</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.36</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.29</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.23</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.17</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.15</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.12</span><span class="scilabdefault">,</span> <span class="scilabnumber">0.08</span><span class="scilabopenclose">]</span><span class="scilaboperator">&#0039;</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// measure weights (here all equal to 1...)</span>
<span class="scilabid">wm</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://ones">ones</a><span class="scilabopenclose">(</span><span class="scilabid">m</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// and we want to find the parameters x such that the model fits the given</span>
<span class="scilabcomment">// data in the least square sense:</span>
<span class="scilabcomment">//</span>
<span class="scilabcomment">//  minimize  f(x) = sum_i  wm(i)^2 ( yth(tm(i),x) - ym(i) )^2</span>
<span class="scilabcomment">// initial parameters guess</span>
<span class="scilabid">x0</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1.5</span> <span class="scilabdefault">;</span> <span class="scilabnumber">0.8</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// in the first examples, we define the function fun and dfun</span>
<span class="scilabcomment">// in scilab language</span>
<span class="scilabfkeyword">function</span> <span class="scilabopenclose">[</span><span class="scilabinputoutputargs">y</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">dy</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabfunctionid">myfun</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">tm</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">ym</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">wm</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span> <span class="scilaboperator">=</span> <span class="scilabinputoutputargs">wm</span><span class="scilaboperator">.*</span><span class="scilabopenclose">(</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><a class="scilabcommand" href="scilab://exp">exp</a><span class="scilabopenclose">(</span><span class="scilaboperator">-</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">tm</span><span class="scilabopenclose">)</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">ym</span> <span class="scilabopenclose">)</span>
<span class="scilabid">v</span> <span class="scilaboperator">=</span> <span class="scilabinputoutputargs">wm</span><span class="scilaboperator">.*</span><a class="scilabcommand" href="scilab://exp">exp</a><span class="scilabopenclose">(</span><span class="scilaboperator">-</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">tm</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">dy</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabid">v</span> <span class="scilabdefault">,</span> <span class="scilaboperator">-</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">tm</span><span class="scilaboperator">.*</span><span class="scilabid">v</span><span class="scilabopenclose">]</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">5</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">10</span><span class="scilabdefault">,</span><span class="scilabnumber">10</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">options</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">&#0034;</span><span class="scilabstring">GradObj</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">on</span><span class="scilabstring">&#0034;</span><span class="scilabopenclose">)</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">gradient</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqnonlin</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">myfun</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">options</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Authors</h3>
   <ul class="itemizedlist"><li class="member">Harpreet Singh</li></ul></div>
    <br />

    <div class="manualnavbar">
    <table width="100%">
    <tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
      <td width="30%">
    	<span class="previous"><a href="lsqlin.html">&lt;&lt; lsqlin</a></span>

      </td>
      <td width="40%" class="center">
      	<span class="top"><a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a></span>

      </td>
      <td width="30%" class="next">
      	<span class="next"><a href="lsqnonneg.html">lsqnonneg &gt;&gt;</a></span>

      </td>
    </tr></table>
      <hr />
    </div>
  </body>
</html>