1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>lsqlin</title>
<style type="text/css" media="all">
@import url("scilab_code.css");
@import url("xml_code.css");
@import url("c_code.css");
@import url("style.css");
</style>
</head>
<body>
<div class="manualnavbar">
<table width="100%"><tr>
<td width="30%">
<span class="previous"><a href="linprog.html"><< linprog</a></span>
</td>
<td width="40%" class="center">
<span class="top"><a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a></span>
</td>
<td width="30%" class="next">
<span class="next"><a href="lsqnonlin.html">lsqnonlin >></a></span>
</td>
</tr></table>
<hr />
</div>
<span class="path"><a href="index.html">FOSSEE Optimization Toolbox</a> >> <a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a> > lsqlin</span>
<br /><br />
<div class="refnamediv"><h1 class="refname">lsqlin</h1>
<p class="refpurpose">Solves a linear quadratic problem.</p></div>
<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
<div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">options</span><span class="default">)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">resnorm</span><span class="default">,</span><span class="default">residual</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lambda</span><span class="default">] = </span><span class="functionid">lsqlin</span><span class="default">( ... )</span></pre></div></div>
<div class="refsection"><h3 class="title">Input Parameters</h3>
<dl><dt><span class="term">C :</span>
<dd><p class="para">A matrix of doubles, representing the multiplier of x in the expression C⋅x - d. The number of columns in C is equal to the number of elements in x.</p></dd></dt>
<dt><span class="term">d :</span>
<dd><p class="para">A vector of doubles, representing the additive constant term in the expression C⋅x - d. The number of elements in d is equal to the number of rows in C matrix.</p></dd></dt>
<dt><span class="term">A :</span>
<dd><p class="para">A matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints.</p></dd></dt>
<dt><span class="term">b :</span>
<dd><p class="para">A vector of doubles, related to 'A' and represents the linear coefficients in the linear inequality constraints of size (m X 1).</p></dd></dt>
<dt><span class="term">Aeq :</span>
<dd><p class="para">A matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints.</p></dd></dt>
<dt><span class="term">beq :</span>
<dd><p class="para">A vector of double, vector of doubles, related to 'Aeq' and represents the linear coefficients in the equality constraints of size (m1 X 1).</p></dd></dt>
<dt><span class="term">lb :</span>
<dd><p class="para">A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</p></dd></dt>
<dt><span class="term">ub :</span>
<dd><p class="para">A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</p></dd></dt>
<dt><span class="term">x0 :</span>
<dd><p class="para">A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</p></dd></dt>
<dt><span class="term">options :</span>
<dd><p class="para">A list, containing the option for user to specify. See below for details.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Outputs</h3>
<dl><dt><span class="term">xopt :</span>
<dd><p class="para">A vector of doubles, containing the computed solution of the optimization problem.</p></dd></dt>
<dt><span class="term">resnorm :</span>
<dd><p class="para">A double, containing the objective value returned as a scalar value norm(C⋅x-d)^2.</p></dd></dt>
<dt><span class="term">residual :</span>
<dd><p class="para">A vector of doubles, containing the solution residuals, returned as a vector d-C⋅x.</p></dd></dt>
<dt><span class="term">exitflag :</span>
<dd><p class="para">An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</p></dd></dt>
<dt><span class="term">output :</span>
<dd><p class="para">A structure, containing the information about the optimization. See below for details.</p></dd></dt>
<dt><span class="term">lambda :</span>
<dd><p class="para">A structure, containing the Lagrange multipliers of the lower bounds, upper bounds and constraints at the optimized point. See below for details.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum of a constrained linear least square problem specified by:</p>
<p class="para"><span><img src='./_LaTeX_lsqlin.xml_1.png' style='position:relative;top:41px;width:277px;height:90px'/></span></p>
<p class="para">lsqlin calls Ipopt, an optimization library written in C++, to solve the linear least squares problem.</p>
<p class="para">The options should be defined as type "list" and consist of the following fields:</p>
<p class="para">options= list("MaxIter", [---], "CpuTime", [---]);</p>
<p class="para"><ul class="itemizedlist"><li>MaxIter : A Scalar, specifying the maximum number of iterations that the solver should take.</li>
<li>CpuTime : A Scalar, specifying the maximum amount of CPU time in seconds that the solver should take.</li></ul></p>
<p class="para">The default values for the various items are given as:</p>
<p class="para">options = list("MaxIter", [3000], "CpuTime", [600]);</p>
<p class="para">The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<ul class="itemizedlist"><li>0 : Optimal Solution Found</li>
<li>1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</li>
<li>2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</li>
<li>3 : Stop at Tiny Step.</li>
<li>4 : Solved To Acceptable Level.</li>
<li>5 : Converged to a point of local infeasibility.</li></ul></p>
<p class="para">For more details on exitflag, see the Ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/</p>
<p class="para">The output data structure contains detailed information about the optimization process.
It is of type "struct" and contains the following fields.
<ul class="itemizedlist"><li>output.iterations: The number of iterations performed.</li>
<li>output.constrviolation: The max-norm of the constraint violation.</li></ul></p>
<p class="para">The lambda data structure contains the Lagrange multipliers at the end of optimization. In the current version, the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<ul class="itemizedlist"><li>lambda.lower: The Lagrange multipliers for the lower bound constraints.</li>
<li>lambda.upper: The Lagrange multipliers for the upper bound constraints.</li>
<li>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</li>
<li>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</li></ul></p>
<p class="para"></p></div>
<p class="para">A few examples displaying the various functionalities of lsqlin have been provided below. You will find a series of problems and the appropriate code snippets to solve them.</p>
<div class="refsection"><h3 class="title">Example</h3>
<p class="para">We begin with a simple objective function subjected to three inequality constraints.</p>
<p class="para"><span><img src='./_LaTeX_lsqlin.xml_2.png' style='position:relative;top:27px;width:330px;height:225px'/></span></p>
<p class="para"></p>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 1:An example with inequality constraints.</span>
<span class="scilabcomment">//Initializing C and D.</span>
<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span>
<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">89</span><span class="scilabdefault">;</span>
<span class="scilabnumber">67</span><span class="scilabdefault">;</span>
<span class="scilabnumber">53</span><span class="scilabdefault">;</span>
<span class="scilabnumber">35</span><span class="scilabdefault">;</span>
<span class="scilabnumber">20</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear inequality constraints below.</span>
<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">3</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">191</span>
<span class="scilabnumber">209</span>
<span class="scilabnumber">162</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Run lsqlin</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Example</h3>
<p class="para">Here we build up on the previous example by adding equality constraints.
We add the following constraint to the problem specified above:</p>
<p class="para"><span><img src='./_LaTeX_lsqlin.xml_3.png' style='position:relative;top:8px;width:161px;height:24px'/></span></p>
<p class="para"></p>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 2: Using inequality and equality constraints.</span>
<span class="scilabcomment">//Initializing C and D.</span>
<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span>
<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">89</span><span class="scilabdefault">;</span>
<span class="scilabnumber">67</span><span class="scilabdefault">;</span>
<span class="scilabnumber">53</span><span class="scilabdefault">;</span>
<span class="scilabnumber">35</span><span class="scilabdefault">;</span>
<span class="scilabnumber">20</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear inequality constraints below.</span>
<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">3</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">191</span>
<span class="scilabnumber">209</span>
<span class="scilabnumber">162</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear equality constraints below.</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabnumber">10</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Run lsqlin</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Example</h3>
<p class="para">In this example, we proceed to add the upper and lower bounds to the objective function.</p>
<p class="para"><span><img src='./_LaTeX_lsqlin.xml_4.png' style='position:relative;top:27px;width:129px;height:62px'/></span></p>
<p class="para"></p>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 3: Using equality, inequality constraints and variable bounds</span>
<span class="scilabcomment">//Initializing C and D.</span>
<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span>
<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">89</span><span class="scilabdefault">;</span>
<span class="scilabnumber">67</span><span class="scilabdefault">;</span>
<span class="scilabnumber">53</span><span class="scilabdefault">;</span>
<span class="scilabnumber">35</span><span class="scilabdefault">;</span>
<span class="scilabnumber">20</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear inequality constraints below.</span>
<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">3</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">191</span>
<span class="scilabnumber">209</span>
<span class="scilabnumber">162</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear equality constraints below.</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabnumber">10</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//The upper and lower bounds for the objective function are defined in simple vectors as shown below.</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.1</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Run lsqlin</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Example</h3>
<p class="para">In this example, we proceed to provide an initial value for x to facilitate the computation. We also further enhance the functionality of lsqlin by setting input options. This provides us with the ability to control the solver parameters such as the maximum number of solver iterations and the max. CPU time allowed for the computation.</p>
<p class="para"></p>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 4: Using equality, inequality constraints and variable bounds, initializing x and options.</span>
<span class="scilabcomment">//Initializing C and D.</span>
<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span>
<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">89</span><span class="scilabdefault">;</span>
<span class="scilabnumber">67</span><span class="scilabdefault">;</span>
<span class="scilabnumber">53</span><span class="scilabdefault">;</span>
<span class="scilabnumber">35</span><span class="scilabdefault">;</span>
<span class="scilabnumber">20</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear inequality constraints below.</span>
<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">3</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">191</span>
<span class="scilabnumber">209</span>
<span class="scilabnumber">162</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear equality constraints below.</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabnumber">10</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//The upper and lower bounds for the objective function are defined in simple vectors as shown below.</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.1</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Initializing x.</span>
<span class="scilabid">x0</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabopenclose">]</span>
<span class="scilabcomment">//Setting the options</span>
<span class="scilabid">options</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">"</span><span class="scilabstring">MaxIter</span><span class="scilabstring">"</span><span class="scilabdefault">,</span> <span class="scilabopenclose">[</span><span class="scilabnumber">5000</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span> <span class="scilabstring">"</span><span class="scilabstring">CpuTime</span><span class="scilabstring">"</span><span class="scilabdefault">,</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1000</span><span class="scilabopenclose">]</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Run lsqlin</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">options</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Example</h3>
<p class="para">Infeasible Problems: Find x in R^3 such that it minimizes:
We add the following constraint to the objective function specified above:</p>
<p class="para"><span><img src='./_LaTeX_lsqlin.xml_5.png' style='position:relative;top:27px;width:357px;height:62px'/></span></p>
<p class="para"></p>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 5: Infeasible problem</span>
<span class="scilabcomment">//Initializing C and D.</span>
<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0</span><span class="scilabdefault">;</span>
<span class="scilabnumber">0</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span>
<span class="scilabid">d</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">89</span><span class="scilabdefault">;</span>
<span class="scilabnumber">67</span><span class="scilabdefault">;</span>
<span class="scilabnumber">53</span><span class="scilabdefault">;</span>
<span class="scilabnumber">35</span><span class="scilabdefault">;</span>
<span class="scilabnumber">20</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear inequality constraints below.</span>
<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">3</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span>
<span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">191</span>
<span class="scilabnumber">209</span>
<span class="scilabnumber">162</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear equality constraints below.</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabnumber">200</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Run lsqlin</span>
<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
<ul class="itemizedlist"><li class="member">Harpreet Singh</li></ul></div>
<br />
<div class="manualnavbar">
<table width="100%">
<tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
<td width="30%">
<span class="previous"><a href="linprog.html"><< linprog</a></span>
</td>
<td width="40%" class="center">
<span class="top"><a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a></span>
</td>
<td width="30%" class="next">
<span class="next"><a href="lsqnonlin.html">lsqnonlin >></a></span>
</td>
</tr></table>
<hr />
</div>
</body>
</html>
|