summaryrefslogtreecommitdiff
path: root/help/en_US/scilab_en_US_help/fmincon.html
blob: c36f58fa42a5fa2d92beded9b0e773d2ecb07b8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
<html><head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <title>fmincon</title>
    <style type="text/css" media="all">
      @import url("scilab_code.css");
      @import url("xml_code.css");
      @import url("c_code.css");
      @import url("style.css");
    </style>
  </head>
  <body>
    <div class="manualnavbar">
    <table width="100%"><tr>
      <td width="30%">
    	<span class="previous"><a href="fminbnd.html">&lt;&lt; fminbnd</a></span>

      </td>
      <td width="40%" class="center">
      	<span class="top"><a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a></span>

      </td>
      <td width="30%" class="next">
      	<span class="next"><a href="fminimax.html">fminimax &gt;&gt;</a></span>

      </td>
    </tr></table>
      <hr />
    </div>



    <span class="path"><a href="index.html">FOSSEE Optimization Toolbox</a> &gt;&gt; <a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a> &gt; fmincon</span>

    <br /><br />
    <div class="refnamediv"><h1 class="refname">fmincon</h1>
    <p class="refpurpose">Solves a multi-variable constrainted optimization problem.</p></div>


<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
   <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">fmincon</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">fmincon</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">fmincon</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">fmincon</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">nlc</span><span class="default">)</span>
<span class="default">xopt</span><span class="default"> = </span><span class="functionid">fmincon</span><span class="default">(</span><span class="default">f</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">nlc</span><span class="default">,</span><span class="default">options</span><span class="default">)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">] = </span><span class="functionid">fmincon</span><span class="default">(.....)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">exitflag</span><span class="default">]= </span><span class="functionid">fmincon</span><span class="default">(.....)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">]= </span><span class="functionid">fmincon</span><span class="default">(.....)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lambda</span><span class="default">]=</span><span class="functionid">fmincon</span><span class="default">(.....)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lambda</span><span class="default">,</span><span class="default">gradient</span><span class="default">]=</span><span class="functionid">fmincon</span><span class="default">(.....)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lambda</span><span class="default">,</span><span class="default">gradient</span><span class="default">,</span><span class="default">hessian</span><span class="default">]=</span><span class="functionid">fmincon</span><span class="default">(.....)</span></pre></div></div>

<div class="refsection"><h3 class="title">Input Parameters</h3>
   <dl><dt><span class="term">f :</span>
      <dd><p class="para">A function, representing the objective function of the problem.</p></dd></dt>
   <dt><span class="term">x0 :</span>
      <dd><p class="para">A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where &#0039;n&#0039; is the number of variables.</p></dd></dt>
   <dt><span class="term">A :</span>
      <dd><p class="para">A matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where &#0039;m&#0039; is the number of linear inequality constraints.</p></dd></dt>
   <dt><span class="term">b :</span>
      <dd><p class="para">A vector of doubles, related to &#0039;A&#0039; and represents the linear coefficients in the linear inequality constraints of size (m X 1).</p></dd></dt>
   <dt><span class="term">Aeq :</span>
      <dd><p class="para">A matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where &#0039;m1&#0039; is the number of linear equality constraints.</p></dd></dt>
   <dt><span class="term">beq :</span>
      <dd><p class="para">A vector of double, vector of doubles, related to &#0039;Aeq&#0039; and represents the linear coefficients in the equality constraints of size (m1 X 1).</p></dd></dt>
   <dt><span class="term">lb :</span>
      <dd><p class="para">A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where &#0039;n&#0039; is the number of variables.</p></dd></dt>
   <dt><span class="term">ub :</span>
      <dd><p class="para">A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where &#0039;n&#0039; is the number of variables.</p></dd></dt>
   <dt><span class="term">nlc :</span>
      <dd><p class="para">A function, representing the Non-linear Constraints functions(both Equality and Inequality) of the problem. It is declared in such a way that non-linear inequality constraints (c), and the non-linear equality constraints (ceq) are defined as separate single row vectors.</p></dd></dt>
   <dt><span class="term">options :</span>
      <dd><p class="para">A list, containing the option for user to specify. See below for details.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Outputs</h3>
 <dl><dt><span class="term">xopt :</span>
      <dd><p class="para">A vector of doubles, containing the computed solution of the optimization problem.</p></dd></dt>
   <dt><span class="term">fopt :</span>
      <dd><p class="para">A double, containing the value of the function at x.</p></dd></dt>
   <dt><span class="term">exitflag :</span>
      <dd><p class="para">An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</p></dd></dt>
   <dt><span class="term">output :</span>
      <dd><p class="para">A structure, containing the information about the optimization. See below for details.</p></dd></dt>
   <dt><span class="term">lambda :</span>
      <dd><p class="para">A structure, containing the Lagrange multipliers of the lower bounds, upper bounds and constraints at the optimized point. See below for details.</p></dd></dt>
   <dt><span class="term">gradient :</span>
      <dd><p class="para">A vector of doubles, containing the objective&#0039;s gradient of the solution.</p></dd></dt>
   <dt><span class="term">hessian  :</span>
      <dd><p class="para">A matrix of doubles, containing the Lagrangian&#0039;s hessian of the solution.</p></dd></dt></dl></div>

<div class="refsection"><h3 class="title">Description</h3>
   <p class="para">Search the minimum of a constrained optimization problem specified by:</p>
   <p class="para">Find the minimum of f(x) such that</p>
   <p class="para"><span><img src='./_LaTeX_fmincon.xml_1.png' style='position:relative;top:74px;width:220px;height:156px'/></span></p>
   <p class="para">fmincon calls Ipopt, an optimization library written in C++, to solve the Constrained Optimization problem.</p>
   <p class="para"><h3 class="title">Options</h3>
The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:</p>
   <p class="para">options= list(&#0034;MaxIter&#0034;, [---], &#0034;CpuTime&#0034;, [---], &#0034;GradObj&#0034;, ---, &#0034;Hessian&#0034;, ---, &#0034;GradCon&#0034;, ---);</p>
   <p class="para">The options should be defined as type &#0034;list&#0034; and consist of the following fields:
<ul class="itemizedlist"><li>MaxIter : A Scalar, specifying the maximum number of iterations that the solver should take.</li>
<li>CpuTime : A Scalar, specifying the maximum amount of CPU time in seconds that the solver should take.</li>
<li>GradObj : A function, representing the gradient function of the Objective in vector form.</li>
<li>Hessian : A  function, representing the hessian function of the Lagrange in the form of a Symmetric Matrix with Input parameters as x, Objective factor and Lambda. Refer to Example 5 for definition of Lagrangian Hessian function.</li>
<li>GradCon : A function, representing the gradient of the Non-Linear Constraints (both Equality and Inequality) of the problem. It is declared in such a way that gradient of non-linear inequality constraints are defined first as a separate Matrix (cg of size m2 X n or as an empty), followed by gradient of non-linear equality constraints as a separate matrix (ceqg of size m2 X n or as an empty) where m2 &amp;amp; m3 are number of non-linear inequality and equality constraints respectively.</li></ul>
The default values for the various items are given as:</p>
   <p class="para">options = list(&#0034;MaxIter&#0034;, [3000], &#0034;CpuTime&#0034;, [600]);</p>
   <p class="para">The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<ul class="itemizedlist"><li>0 : Optimal Solution Found</li>
<li>1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</li>
<li>2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</li>
<li>3 : Stop at Tiny Step.</li>
<li>4 : Solved To Acceptable Level.</li>
<li>5 : Converged to a point of local infeasibility.</li></ul></p>
   <p class="para">For more details on exitflag, see the Ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/</p>
   <p class="para">The output data structure contains detailed information about the optimization process.
It is of type &#0034;struct&#0034; and contains the following fields.
<ul class="itemizedlist"><li>output.Iterations: The number of iterations performed.</li>
<li>output.Cpu_Time  : The total cpu-time taken.</li>
<li>output.Objective_Evaluation: The number of Objective Evaluations performed.</li>
<li>output.Dual_Infeasibility  : The Dual Infeasiblity of the final soution.</li>
<li>output.Message: The output message for the problem.</li></ul></p>
   <p class="para">The lambda data structure contains the Lagrange multipliers at the end of optimization. In the current version, the values are returned only when the the solution is optimal.
It has type &#0034;struct&#0034; and contains the following fields.
<ul class="itemizedlist"><li>lambda.lower: The Lagrange multipliers for the lower bound constraints.</li>
<li>lambda.upper: The Lagrange multipliers for the upper bound constraints.</li>
<li>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</li>
<li>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</li>
<li>lambda.eqnonlin: The Lagrange multipliers for the non-linear equality constraints.</li>
<li>lambda.ineqnonlin: The Lagrange multipliers for the non-linear inequality constraints.</li></ul></p>
   <p class="para">A few examples displaying the various functionalities of fmincon have been provided below. You will find a series problems and the appropriate code snippets to solve them.</p></div>

<div class="refsection"><h3 class="title">Example</h3>
<p class="para">Here we solve a simple non-linear objective function, subjected to three linear inequality constraints.</p>
   <p class="para">Find x in R^2 such that it minimizes:</p>
   <p class="para"><span><img src='./_LaTeX_fmincon.xml_2.png' style='position:relative;top:29px;width:230px;height:116px'/></span></p>
   <p class="para"></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 1:</span>
<span class="scilabcomment">//Objective function to be minimised</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">f</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">/</span><span class="scilabnumber">3</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Starting point, and linear constraints. Since we haven</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">t added any eqaulity constraints or variable bounds, we need not specify them.</span>
<span class="scilabid">x0</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilaboperator">/</span><span class="scilabnumber">4</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">fval</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">grad</span><span class="scilabdefault">,</span><span class="scilabid">hessian</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span><span class="scilabid">fmincon</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">f</span><span class="scilabdefault">,</span> <span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Example</h3>
<p class="para">Here we build up on the previous example by adding linear equality constraints.
We add the following constraints to the problem specified above:</p>
   <p class="para"><span><img src='./_LaTeX_fmincon.xml_3.png' style='position:relative;top:17px;width:134px;height:42px'/></span></p>
<p class="para"></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 2:</span>
<span class="scilabcomment">//Objective function to be minimised</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">f</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">/</span><span class="scilabnumber">3</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Starting point, and linear constraints.</span>
<span class="scilabid">x0</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilaboperator">/</span><span class="scilabnumber">4</span> <span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear equality constraints below.</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">,</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span>  <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">fval</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">grad</span><span class="scilabdefault">,</span><span class="scilabid">hessian</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span><span class="scilabid">fmincon</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">f</span><span class="scilabdefault">,</span> <span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Example</h3>
<p class="para">In this example, we proceed to add the upper and lower bounds to the objective function.</p>
   <p class="para"><span><img src='./_LaTeX_fmincon.xml_4.png' style='position:relative;top:17px;width:145px;height:42px'/></span></p>
<p class="para"></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 3:</span>
<span class="scilabcomment">//Objective function to be minimised</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">f</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">/</span><span class="scilabnumber">3</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Starting point, and linear constraints.</span>
<span class="scilabid">x0</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilaboperator">/</span><span class="scilabnumber">4</span> <span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear equality constraints below.</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">,</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span>  <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//The upper and lower bounds for the objective function are defined in simple vectors as shown below.</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>    <span class="scilabcomment">//</span>
<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">fval</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">grad</span><span class="scilabdefault">,</span><span class="scilabid">hessian</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span><span class="scilabid">fmincon</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">f</span><span class="scilabdefault">,</span> <span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Example</h3>
 <p class="para">Finally, we add the non-linear constraints to the problem. Note that there is a notable difference in the way this is done as compared to defining the linear constraints.</p>
   <p class="para"><span><img src='./_LaTeX_fmincon.xml_5.png' style='position:relative;top:22px;width:139px;height:52px'/></span></p>
<p class="para"></p>   
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 4:</span>
<span class="scilabcomment">//Objective function to be minimised</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">f</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">/</span><span class="scilabnumber">3</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Starting point, and linear constraints.</span>
<span class="scilabid">x0</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilaboperator">/</span><span class="scilabnumber">4</span> <span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//We specify the linear equality constraints below.</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">,</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span>  <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//The upper and lower bound for the objective function are specified below.</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilaboperator">-</span><span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Nonlinear constraints are required to be defined as a single function with the inequality and equality constraints in separate vectors.</span>
<span class="scilabfkeyword">function</span> <span class="scilabopenclose">[</span><span class="scilabinputoutputargs">c</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">ceq</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabfunctionid">nlc</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">c</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilaboperator">+</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabinputoutputargs">ceq</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">fval</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">grad</span><span class="scilabdefault">,</span><span class="scilabid">hessian</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span><span class="scilabid">fmincon</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">f</span><span class="scilabdefault">,</span> <span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabfunctionid">nlc</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Example</h3>
   <p class="para">Additional Functionality:</p>
   <p class="para">We can further enhance the functionality of fmincon by setting input options. We can pre-define the gradient of the objective function and/or the hessian of the lagrange function and thereby improve the speed of computation. This is elaborated on in example 5. We take the following problem and add simple non-linear constraints, specify the gradients and the hessian of the Lagrange Function. We also set solver parameters using the options.</p>

   <p class="para"><span><img src='./_LaTeX_fmincon.xml_6.png' style='position:relative;top:22px;width:266px;height:101px'/></span></p>
   <p class="para"></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 5:</span>
<span class="scilabcomment">//Objective function to be minimised</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">f</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">+</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">3</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Starting point, linear constraints and variable bounds</span>
<span class="scilabid">x0</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0.1</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0.1</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0.1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">Aeq</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">lb</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">ub</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Nonlinear constraints</span>
<span class="scilabfkeyword">function</span> <span class="scilabopenclose">[</span><span class="scilabinputoutputargs">c</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">ceq</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabfunctionid">nlc</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">c</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">3</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabnumber">2</span> <span class="scilabdefault">,</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">3</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabnumber">10</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabinputoutputargs">ceq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Gradient of objective function</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">fGrad</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilabdefault">,</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">+</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">3</span><span class="scilabopenclose">)</span><span class="scilabdefault">,</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Hessian of the Lagrange Function, which has been pre-defined to improve solver speed.</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">lHess</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">obj</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">lambda</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span> <span class="scilabinputoutputargs">obj</span><span class="scilaboperator">*</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabopenclose">]</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">lambda</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">lambda</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabopenclose">]</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Gradient of Non-Linear Constraints</span>
<span class="scilabfkeyword">function</span> <span class="scilabopenclose">[</span><span class="scilabinputoutputargs">cg</span><span class="scilabdefault">, </span><span class="scilabinputoutputargs">ceqg</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabfunctionid">cGrad</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">cg</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span> <span class="scilabdefault">,</span> <span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span> <span class="scilabdefault">,</span> <span class="scilabnumber">2</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">3</span><span class="scilabopenclose">)</span> <span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span> <span class="scilabdefault">,</span> <span class="scilabnumber">2</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span> <span class="scilabdefault">,</span> <span class="scilabnumber">2</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">3</span><span class="scilabopenclose">)</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabinputoutputargs">ceqg</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabcomment">//Options</span>
<span class="scilabid">options</span><span class="scilaboperator">=</span><a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">&#0034;</span><span class="scilabstring">MaxIter</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1500</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">CpuTime</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabopenclose">[</span><span class="scilabnumber">500</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">GradObj</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabfunctionid">fGrad</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">Hessian</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabfunctionid">lHess</span><span class="scilabdefault">,</span><span class="scilabstring">&#0034;</span><span class="scilabstring">GradCon</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabfunctionid">cGrad</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//Calling Ipopt</span>
<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">fval</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span><span class="scilabid">fmincon</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">f</span><span class="scilabdefault">,</span> <span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabfunctionid">nlc</span><span class="scilabdefault">,</span><span class="scilabid">options</span><span class="scilabopenclose">)</span>
<span class="scilabcomment">//Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Example</h3>

   <p class="para">Infeasible Problems: Find x in R^2 such that it minimizes:</p>
   <p class="para"><span><img src='./_LaTeX_fmincon.xml_7.png' style='position:relative;top:39px;width:225px;height:136px'/></span></p>
   <p class="para"></p>
   <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 6:</span>
<span class="scilabcomment">//Infeasible objective function.</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">f</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">/</span><span class="scilabnumber">3</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabid">x0</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilaboperator">/</span><span class="scilabnumber">4</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">Aeq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">fval</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">grad</span><span class="scilabdefault">,</span><span class="scilabid">hessian</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span><span class="scilabid">fmincon</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">f</span><span class="scilabdefault">,</span> <span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>

<div class="refsection"><h3 class="title">Example</h3>
<p class="para">Unbounded Problems: Find x in R^2 such that it minimizes:</p>
   <p class="para"><span><img src='./_LaTeX_fmincon.xml_8.png' style='position:relative;top:17px;width:209px;height:93px'/></span></p>
   <p class="para"></p>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Example 7: Unbounded objective function.</span>
<span class="scilabfkeyword">function</span> <span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilabfunctionid">f</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">)</span>
<span class="scilabinputoutputargs">y</span><span class="scilaboperator">=</span><span class="scilaboperator">-</span><span class="scilabopenclose">(</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span> <span class="scilaboperator">-</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilaboperator">*</span><span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">/</span><span class="scilabnumber">3</span> <span class="scilaboperator">+</span> <span class="scilabinputoutputargs">x</span><span class="scilabopenclose">(</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilaboperator">^</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabfkeyword">endfunction</span>
<span class="scilabid">x0</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">0</span> <span class="scilabdefault">,</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">A</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabdefault">;</span> <span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabid">b</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span><span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">fval</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabdefault">,</span><span class="scilabid">grad</span><span class="scilabdefault">,</span><span class="scilabid">hessian</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span><span class="scilabid">fmincon</span><span class="scilabopenclose">(</span><span class="scilabfunctionid">f</span><span class="scilabdefault">,</span> <span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>


<div class="refsection"><h3 class="title">Authors</h3>
   <ul class="itemizedlist"><li class="member">R.Vidyadhar , Vignesh Kannan</li></ul></div>
    <br />

    <div class="manualnavbar">
    <table width="100%">
    <tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
      <td width="30%">
    	<span class="previous"><a href="fminbnd.html">&lt;&lt; fminbnd</a></span>

      </td>
      <td width="40%" class="center">
      	<span class="top"><a href="section_44e1f57c5225357b5fe53cb5fad967e9.html">FOSSEE Optimization Toolbox</a></span>

      </td>
      <td width="30%" class="next">
      	<span class="next"><a href="fminimax.html">fminimax &gt;&gt;</a></span>

      </td>
    </tr></table>
      <hr />
    </div>
  </body>
</html>