1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from qpipoptmat.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="qpipoptmat" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>qpipoptmat</refname>
<refpurpose>Solves a linear quadratic problem.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = qpipoptmat(H,f)
xopt = qpipoptmat(H,f,A,b)
xopt = qpipoptmat(H,f,A,b,Aeq,beq)
xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
[xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Input Parameters</title>
<variablelist>
<varlistentry><term>H :</term>
<listitem><para> A symmetric matrix of doubles, representing the Hessian of the quadratic problem.</para></listitem></varlistentry>
<varlistentry><term>f :</term>
<listitem><para> A vector of doubles, representing coefficients of the linear terms in the quadratic problem.</para></listitem></varlistentry>
<varlistentry><term>A :</term>
<listitem><para> A matrix of doubles, containing the coefficients of linear inequality constraints of size (m X n) where 'm' is the number of linear inequality constraints.</para></listitem></varlistentry>
<varlistentry><term>b :</term>
<listitem><para> A vector of doubles, related to 'A' and containing the the Right hand side equation of the linear inequality constraints of size (m X 1).</para></listitem></varlistentry>
<varlistentry><term>Aeq :</term>
<listitem><para> A matrix of doubles, containing the coefficients of linear equality constraints of size (m1 X n) where 'm1' is the number of linear equality constraints.</para></listitem></varlistentry>
<varlistentry><term>beq :</term>
<listitem><para> A vector of doubles, related to 'Aeq' and containing the the Right hand side equation of the linear equality constraints of size (m1 X 1).</para></listitem></varlistentry>
<varlistentry><term>lb :</term>
<listitem><para> A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>ub :</term>
<listitem><para> A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>param :</term>
<listitem><para> A list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title> Outputs</title>
<variablelist>
<varlistentry><term>xopt :</term>
<listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> A double, containing the value of the function at xopt.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> A structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
<listitem><para> A structure, containing the Lagrange multipliers of the lower bounds, upper bounds and constraints at the optimized point. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a constrained linear quadratic optimization problem specified by :
</para>
<para>
<latex>
\begin{eqnarray}
\hspace{1pt} &\mbox{min}_{x}
\hspace{1pt} & 1/2⋅x^T⋅H⋅x + f^T⋅x \\
\hspace{1pt} & \text{Subjected to: } & A⋅x \leq b \\
\end{eqnarray}\\
\begin{eqnarray}
\hspace{115pt} & Aeq⋅x = beq \\
\hspace{115pt} & lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
qpipoptmat calls Ipopt, an optimization library written in C++, to solve the optimization problem.
</para>
<title>Options</title>
<para>
The options allow the user to set various parameters of the Optimization problem. The syntax for the options is given by:
</para>
<para>
options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---, "Hessian", ---, "GradCon", ---);
</para>
<para>
The options should be defined as type "list" and consist of the following fields:
<itemizedlist>
<listitem>MaxIter : A Scalar, specifying the maximum number of iterations that the solver should take.</listitem>
<listitem>CpuTime : A Scalar, specifying the maximum amount of CPU time in seconds that the solver should take.</listitem>
</itemizedlist>
</para>
<para>
The default values for the various items are given as:
</para>
<para>
options = list("MaxIter", [3000], "CpuTime", [600]);
</para>
<para>
The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<itemizedlist>
<listitem> 0 : Optimal Solution Found </listitem>
<listitem> 1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem> 2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
<listitem> 3 : Stop at Tiny Step.</listitem>
<listitem> 4 : Solved To Acceptable Level.</listitem>
<listitem> 5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
</para>
<para>
For more details on exitflag, see the Ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/
</para>
<para>
The output data structure contains detailed information about the optimization process.
It is of type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.iterations: The number of iterations performed.</listitem>
<listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
</itemizedlist>
</para>
<para>
The lambda data structure contains the Lagrange multipliers at the end of optimization. In the current version, the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
<listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
<listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
</itemizedlist>
</para>
<para>
</para>
</refsection>
<refsection>
<title>Example</title>
<para>
Here we solve a simple objective function.
</para>
<para>
Find x in R^6 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) &= \dfrac{1}{2}x'\boldsymbol{\cdot} H\boldsymbol{\cdot}x + f' \boldsymbol{\cdot} x\\
\text{Where: } H &= I_{6}\\
F &=
\begin{array}{cccccc}
[1 & 2 & 3 & 4 & 5 & 6]
\end{array}
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 1:
//Minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f)
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
We proceed to add simple linear inequality constraints.
<para>
<latex>
\begin{eqnarray}
\hspace{1pt} &x_{2} + x_{4}+ 2x_{5} - x_{6}&\leq -1\\
\hspace{1pt} &-x_{1} + 2x_{3} + x_{4} + x_{5}&\leq 2.5\\
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 2:
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
//Inequality constraints
A= [0,1,0,1,2,-1;
-1,0,2,1,1,0];
b = [-1; 2.5];
[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b)
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
Here we build up on the previous example by adding linear equality constraints.
We add the following constraints to the problem specified above:
<para>
<latex>
\begin{eqnarray}
\hspace{1pt} &x_{1} - x_{2} + x_{3} + 3x_{5} + x_{6}&= 1 \\
\hspace{1pt} &-x_{1} + 2x_{3}+ x_{4} + x_{5}&= 2\\
\hspace{1pt} &2x_{1} + 5x_{2}+ 3x_{3} + x_{5}&= 3
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 3:
//Minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
//Inequality constraints
A= [0,1,0,1,2,-1;
-1,0,2,1,1,0];
b = [-1; 2.5];
//Equality constraints
Aeq= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
2,5,3,0,1,0];
beq=[1; 2; 3];
[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq)
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
In this example, we proceed to add the upper and lower bounds to the objective function.
</para>
<para>
<latex>
\begin{eqnarray}
-1000 &\leq x_{1} &\leq 10000\\
-10000 &\leq x_{2} &\leq 100\\
0 &\leq x_{3} &\leq 1.5\\
-1000 &\leq x_{4} &\leq 100\\
-1000 &\leq x_{5} &\leq 100\\
-1000 &\leq x_{6} &\leq 1000
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 4:
//Minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
//Inequality constraints
A= [0,1,0,1,2,-1;
-1,0,2,1,1,0];
b = [-1; 2.5];
//Equality constraints
Aeq= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
2,5,3,0,1,0];
beq=[1; 2; 3];
//Variable bounds
lb=[-1000; -10000; 0; -1000; -1000; -1000];
ub=[10000; 100; 1.5; 100; 100; 1000];
[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
In this example, we initialize the values of x to speed up the computation. We further enhance the functionality of qpipoptmat by setting input options.
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 5:
//Minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
//Inequality constraints
A= [0,1,0,1,2,-1;
-1,0,2,1,1,0];
b = [-1; 2.5];
//Equality constraints
Aeq= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
2,5,3,0,1,0];
beq=[1; 2; 3];
//Variable bounds
lb=[-1000; -10000; 0; -1000; -1000; -1000];
ub=[10000; 100; 1.5; 100; 100; 1000];
//Initial guess and options
x0 = repmat(0,6,1);
options = list("MaxIter", 300, "CpuTime", 100);
[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,options)
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
Infeasible Problems: Find x in R^6 such that it minimizes the following objective function under the given constraints:
<para>
<latex>
\begin{eqnarray}
\hspace{70pt} &x_{2} + x_{4}+ 2x_{5} - x_{6}&\leq -1\\
\hspace{70pt} &-x_{1} + 2x_{3} + x_{4} + x_{5}&\leq 2.5\\
\hspace{70pt} &x_{2} + x_{4}+ 2x_{5} - x_{6}&= 4 \\
\hspace{70pt} &-x_{1} + 2x_{3}+ x_{4} + x_{5}&= 2\\
\\ \end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 6:
//Minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
//Inequality constraints
A= [0,1,0,1,2,-1;
-1,0,2,1,1,0];
b = [-1; 2.5];
//Equality constraints
Aeq= [0,1,0,1,2,-1;
-1,0,-3,-4,5,6];
beq=[4; 2];
[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq)
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
Unbounded Problems: Find x in R^6 such that it minimizes the objective function used above under the following constraints:
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) &= \dfrac{1}{2}x'\boldsymbol{\cdot} H\boldsymbol{\cdot}x + f' \boldsymbol{\cdot} x\\
\text{Where H is specified below and}\\
F &=
\begin{array}{cccccc}
[1 & 2 & 3 & 4 & 5 & 6]
\end{array}
\end{eqnarray}\\
\text{Subjected to: }\\
\begin{eqnarray}
\hspace{70pt} &x_{2} + x_{4}+ 2x_{5} - x_{6}&\leq -1\\
\hspace{70pt} &-x_{1} + 2x_{3} + x_{4} + x_{5}&\leq 2.5\\
\hspace{70pt} &x_{1} - x_{2} + x_{3} + 3x_{5} + x_{6}&= 1 \\
\hspace{70pt} &-x_{1} + 2x_{3}+ x_{4} + x_{5}&= 2\\
\\ \end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//Example 7:
//Minimize 0.5*x'*H*x + f'*x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6); H(1,1) = -1;
//Inequality constraints
A= [0,1,0,1,2,-1;
-1,0,2,1,1,0];
b = [-1; 2.5];
//Equality constraints
Aeq= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6];
beq=[1; 2];
[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|