1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from qpipopt.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="qpipopt" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>qpipopt</refname>
<refpurpose>Solves a linear quadratic problem.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0)
xopt = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param)
[xopt,fopt,exitflag,output,lamda] = qpipopt( ... )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>nbVar :</term>
<listitem><para> a double, number of variables</para></listitem></varlistentry>
<varlistentry><term>nbCon :</term>
<listitem><para> a double, number of constraints</para></listitem></varlistentry>
<varlistentry><term>H :</term>
<listitem><para> a symmetric matrix of double, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
<varlistentry><term>f :</term>
<listitem><para> a vector of double, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
<varlistentry><term>lb :</term>
<listitem><para> a vector of double, contains lower bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>ub :</term>
<listitem><para> a vector of double, contains upper bounds of the variables.</para></listitem></varlistentry>
<varlistentry><term>A :</term>
<listitem><para> a matrix of double, contains the constraint matrix conLB ≤ A⋅x ≤ conUB.</para></listitem></varlistentry>
<varlistentry><term>conLB :</term>
<listitem><para> a vector of double, contains lower bounds of the constraints conLB ≤ A⋅x ≤ conUB.</para></listitem></varlistentry>
<varlistentry><term>conUB :</term>
<listitem><para> a vector of double, contains upper bounds of the constraints conLB ≤ A⋅x ≤ conUB.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> a vector of double, contains initial guess of variables.</para></listitem></varlistentry>
<varlistentry><term>param :</term>
<listitem><para> a list containing the parameters to be set.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
<listitem><para> a vector of double, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>fopt :</term>
<listitem><para> a double, the value of the function at x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> The exit status. See below for details.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> The structure consist of statistics about the optimization. See below for details.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
<listitem><para> The structure consist of the Lagrange multipliers at the solution of problem. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a constrained linear quadratic optimization problem specified by :
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& 1/2⋅x^T⋅H⋅x + f^T⋅x \\
& \text{subject to} & conLB \leq A⋅x \leq conUB \\
& & lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
The routine calls Ipopt for solving the quadratic problem, Ipopt is a library written in C++.
</para>
<para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>exitflag=0 : Optimal Solution Found </listitem>
<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
</para>
<para>
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
</para>
<para>
The output data structure contains detailed informations about the optimization process.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.iterations: The number of iterations performed during the search</listitem>
<listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
</itemizedlist>
</para>
<para>
The lambda data structure contains the Lagrange multipliers at the end
of optimization. In the current version the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
<listitem>lambda.eqlin: The Lagrange multipliers for the linear equality constraints.</listitem>
<listitem>lambda.ineqlin: The Lagrange multipliers for the linear inequality constraints.</listitem>
</itemizedlist>
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Ref : example 14 :
//https://www.me.utexas.edu/~jensen/ORMM/supplements/methods/nlpmethod/S2_quadratic.pdf
// min. -8*x1*x1 -16*x2*x2 + x1 + 4*x2
// such that
// x1 + x2 <= 5,
// x1 <= 3,
// x1 >= 0,
// x2 >= 0
H = [2 0
0 8];
f = [-8; -16];
A = [1 1;1 0];
conUB = [5;3];
conLB = [-%inf; -%inf];
lb = [0; 0];
ub = [%inf; %inf];
nbVar = 2;
nbCon = 2;
[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB)
//Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find x in R^6 such that:
A= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
2,5,3,0,1,0
0,1,0,1,2,-1;
-1,0,2,1,1,0];
conLB=[1;2;3;-%inf;-%inf];
conUB = [1;2;3;-1;2.5];
lb=[-1000;-10000; 0; -1000; -1000; -1000];
ub=[10000; 100; 1.5; 100; 100; 1000];
//and minimize 0.5*x'⋅H⋅x + f'⋅x with
f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
nbVar = 6;
nbCon = 5;
x0 = repmat(0,nbVar,1);
param = list("MaxIter", 300, "CpuTime", 100);
[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,H,f,lb,ub,A,conLB,conUB,x0,param)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|