1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from lsqnonneg.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="lsqnonneg" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>lsqnonneg</refname>
<refpurpose>Solves nonnegative least-squares curve fitting problems.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = lsqnonneg(C,d)
xopt = lsqnonneg(C,d,param)
[xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>C :</term>
<listitem><para> a matrix of double, represents the multiplier of the solution x in the expression C⋅x - d. Number of columns in C is equal to the number of elements in x.</para></listitem></varlistentry>
<varlistentry><term>d :</term>
<listitem><para> a vector of double, represents the additive constant term in the expression C⋅x - d. Number of elements in d is equal to the number of rows in C matrix.</para></listitem></varlistentry>
<varlistentry><term>xopt :</term>
<listitem><para> a vector of double, the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>resnorm :</term>
<listitem><para> a double, objective value returned as the scalar value norm(C⋅x-d)^2.</para></listitem></varlistentry>
<varlistentry><term>residual :</term>
<listitem><para> a vector of double, solution residuals returned as the vector d-C⋅x.</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> The exit status. See below for details.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> The structure consist of statistics about the optimization. See below for details.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
<listitem><para> The structure consist of the Lagrange multipliers at the solution of problem. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Solves nonnegative least-squares curve fitting problems specified by :
</para>
<para>
<latex>
\begin{eqnarray}
&\mbox{min}_{x}
& 1/2||C⋅x - d||_2^2 \\
& & x \geq 0 \\
\end{eqnarray}
</latex>
</para>
<para>
The routine calls Ipopt for solving the nonnegative least-squares curve fitting problems, Ipopt is a library written in C++.
</para>
<para>
The options allows the user to set various parameters of the Optimization problem.
It should be defined as type "list" and contains the following fields.
<itemizedlist>
<listitem>Syntax : options= list("MaxIter", [---], "CpuTime", [---]);</listitem>
<listitem>MaxIter : a Scalar, containing the Maximum Number of Iteration that the solver should take.</listitem>
<listitem>CpuTime : a Scalar, containing the Maximum amount of CPU Time that the solver should take.</listitem>
<listitem>Default Values : options = list("MaxIter", [3000], "CpuTime", [600]);</listitem>
</itemizedlist>
</para>
<para>
The exitflag allows to know the status of the optimization which is given back by Ipopt.
<itemizedlist>
<listitem>exitflag=0 : Optimal Solution Found </listitem>
<listitem>exitflag=1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=2 : Maximum CPU Time exceeded. Output may not be optimal.</listitem>
<listitem>exitflag=3 : Stop at Tiny Step.</listitem>
<listitem>exitflag=4 : Solved To Acceptable Level.</listitem>
<listitem>exitflag=5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
</para>
<para>
For more details on exitflag see the ipopt documentation, go to http://www.coin-or.org/Ipopt/documentation/
</para>
<para>
The output data structure contains detailed informations about the optimization process.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.iterations: The number of iterations performed during the search</listitem>
<listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
</itemizedlist>
</para>
<para>
The lambda data structure contains the Lagrange multipliers at the end
of optimization. In the current version the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
</itemizedlist>
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
// A basic lsqnonneg problem
C = [1 1 1;
1 1 0;
0 1 1;
1 0 0;
0 0 1]
d = [89;
67;
53;
35;
20;]
[xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|