1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from lsqnonlin.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="lsqnonlin" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>lsqnonlin</refname>
<refpurpose>Solves a non linear data fitting problems.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
xopt = lsqnonlin(fun,x0)
xopt = lsqnonlin(fun,x0,lb,ub)
xopt = lsqnonlin(fun,x0,lb,ub,options)
[xopt,resnorm] = lsqnonlin( ... )
[xopt,resnorm,residual] = lsqnonlin( ... )
[xopt,resnorm,residual,exitflag] = lsqnonlin( ... )
[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin( ... )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Input Parameters</title>
<variablelist>
<varlistentry><term>fun :</term>
<listitem><para> A function, representing the objective function and gradient (if given) of the problem.</para></listitem></varlistentry>
<varlistentry><term>x0 :</term>
<listitem><para> A vector of doubles, containing the starting values of variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>lb :</term>
<listitem><para> A vector of doubles, containing the lower bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>ub :</term>
<listitem><para> A vector of doubles, containing the upper bounds of the variables of size (1 X n) or (n X 1) where 'n' is the number of variables.</para></listitem></varlistentry>
<varlistentry><term>options :</term>
<listitem><para> A list, containing the option for user to specify. See below for details.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title> Outputs</title>
<variablelist>
<varlistentry><term>xopt :</term>
<listitem><para> A vector of doubles, containing the computed solution of the optimization problem.</para></listitem></varlistentry>
<varlistentry><term>resnorm :</term>
<listitem><para> A double, containing the objective value returned as a scalar value i.e. sum(fun(x).^2).</para></listitem></varlistentry>
<varlistentry><term>residual :</term>
<listitem><para> A vector of doubles, containing the solution of the objective function, returned as a vector i.e. fun(x).</para></listitem></varlistentry>
<varlistentry><term>exitflag :</term>
<listitem><para> An integer, containing the flag which denotes the reason for termination of algorithm. See below for details.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
<listitem><para> A structure, containing the information about the optimization. See below for details.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
<listitem><para> A structure, containing the Lagrange multipliers of the lower bounds, upper bounds and constraints at the optimized point. See below for details.</para></listitem></varlistentry>
<varlistentry><term>gradient :</term>
<listitem><para> A vector of doubles, containing the objective's gradient of the solution.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
Search the minimum of a constrained non-linear least square problem specified by :
</para>
<para>
<latex>
\begin{eqnarray}
\hspace{1pt} &\mbox{min}_{x}
\hspace{1pt} & (f_{1}(x)^{2} + f_{2}(x)^{2} + f_{n}(x)^{2}) \\
\hspace{1pt} & & lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
lsqnonlin calls fmincon, which calls Ipopt, an optimization library written in C++ to solve the non-linear least squares problem.
</para>
<para>
The options should be defined as type "list" and consist of the following fields:
</para>
<para>
options= list("MaxIter", [---], "CpuTime", [---], "GradObj", ---);
</para>
<para>
<itemizedlist>
<listitem>MaxIter : A Scalar, specifying the maximum number of iterations that the solver should take.</listitem>
<listitem>CpuTime : A Scalar, specifying the maximum amount of CPU time in seconds that the solver should take.</listitem>
<listitem>GradObj : A string, representing whetherthe gradient function is on or off.</listitem>
</itemizedlist>
</para>
<para>
The default values for the various items are given as:
</para>
<para>
Default Values : options = list("MaxIter", [3000], "CpuTime", [600], "GradObj", "off");
</para>
<para>
The exitflag allows the user to know the status of the optimization which is returned by Ipopt. The values it can take and what they indicate is described below:
<itemizedlist>
<listitem> 0 : Optimal Solution Found </listitem>
<listitem> 1 : Maximum Number of Iterations Exceeded. Output may not be optimal.</listitem>
<listitem> 2 : Maximum amount of CPU Time exceeded. Output may not be optimal.</listitem>
<listitem> 3 : Stop at Tiny Step.</listitem>
<listitem> 4 : Solved To Acceptable Level.</listitem>
<listitem> 5 : Converged to a point of local infeasibility.</listitem>
</itemizedlist>
</para>
<para>
For more details on exitflag, see the Ipopt documentation which can be found on http://www.coin-or.org/Ipopt/documentation/
</para>
<para>
The output data structure contains detailed information about the optimization process.
It is of type "struct" and contains the following fields.
<itemizedlist>
<listitem>output.iterations: The number of iterations performed.</listitem>
<listitem>output.constrviolation: The max-norm of the constraint violation.</listitem>
</itemizedlist>
</para>
<para>
The lambda data structure contains the Lagrange multipliers at the end of optimization. In the current version, the values are returned only when the the solution is optimal.
It has type "struct" and contains the following fields.
<itemizedlist>
<listitem>lambda.lower: The Lagrange multipliers for the lower bound constraints.</listitem>
<listitem>lambda.upper: The Lagrange multipliers for the upper bound constraints.</listitem>
</itemizedlist>
</para>
<para>
</para>
</refsection>
<para>
A few examples displaying the various functionalities of lsqnonlin have been provided below. You will find a series of problems and the appropriate code snippets to solve them.
</para>
<refsection>
<title>Example</title>
<para>
Here we solve a simple non-linear least square example taken from leastsq default present in scilab.
</para>
<para>
Find x in R^2 such that it minimizes:
</para>
<para>
<latex>
\begin{eqnarray}
\mbox{min}_{x}\ f(x) = sum_{i=1,...,n} & wm_{i}^{2} (x_{1} \boldsymbol{\cdot} exp(-x_{2}\boldsymbol{\cdot} tm)) - ym_{i} )^{2}\\
\end{eqnarray}\\
\text{With initial values as: }\\
\begin{array}{cc}
[1.5 & 0.8]
\end{array}
</latex>
</para>
<programlisting role="example"><![CDATA[
// we have the m measures (ti, yi):
m = 10;
tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]';
ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]';
// measure weights (here all equal to 1...)
wm = ones(m,1);
// and we want to find the parameters x such that the model fits the given
// data in the least square sense:
//
// minimize f(x) = sum_i wm(i)^2 ( x(1)*exp(-x(2)*tm(i) - ym(i) )^2
// initial parameters guess
x0 = [1.5 ; 0.8];
// in the first examples, we define the function fun and dfun
// in scilab language
function y=myfun(x, them, ym, wm)
y = wm.*( x(1)*exp(-x(2)*tm) - ym )
endfunction
// the simplest call
[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
Here we build up on the previous example by adding upper and lower bounds to the variables.
We add the following bounds to the problem specified above:
</para>
<para>
<latex>
\begin{eqnarray}
-5 &\leq x_{1} &\leq 10\\
-5 &\leq x_{2} &\leq 10\\
\end{eqnarray}
</latex>
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//A simple non-linear least square example taken from leastsq default present in scilab
function y=yth(t, x)
y = x(1)*exp(-x(2)*t)
endfunction
// we have the m measures (ti, yi):
m = 10;
tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]';
ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]';
// measure weights (here all equal to 1...)
wm = ones(m,1);
// and we want to find the parameters x such that the model fits the given
// data in the least square sense:
//
// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2
// initial parameters guess
x0 = [1.5 ; 0.8];
// in the first examples, we define the function fun and dfun
// in scilab language
function y=myfun(x, tm, ym, wm)
y = wm.*( yth(tm, x) - ym )
endfunction
lb = [-5 ,-5];
ub = [10, 10];
// the simplest call
[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub)
// Press ENTER to continue
]]></programlisting>
</refsection>
<refsection>
<title>Example</title>
<para>
In this example, we further enhance the functionality of lsqnonlin by setting input options. This provides us with the ability to control the solver parameters such as the maximum number of solver iterations and the max. CPU time allowed for the computation.
</para>
<para>
</para>
<programlisting role="example"><![CDATA[
//A basic example taken from leastsq default present in scilab with gradient
function y=yth(t, x)
y = x(1)*exp(-x(2)*t)
endfunction
// we have the m measures (ti, yi):
m = 10;
tm = [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5]';
ym = [0.79, 0.59, 0.47, 0.36, 0.29, 0.23, 0.17, 0.15, 0.12, 0.08]';
// measure weights (here all equal to 1...)
wm = ones(m,1);
// and we want to find the parameters x such that the model fits the given
// data in the least square sense:
//
// minimize f(x) = sum_i wm(i)^2 ( yth(tm(i),x) - ym(i) )^2
// initial parameters guess
x0 = [1.5 ; 0.8];
// in the first examples, we define the function fun and dfun
// in scilab language
function [y,dy]=myfun(x, tm, ym, wm)
y = wm.*( x(1)*exp(-x(2)*tm) - ym )
v = wm.*exp(-x(2)*tm)
dy = [v , -x(1)*tm.*v]
endfunction
lb = [-5,-5];
ub = [10,10];
options = list("GradObj", "on")
[xopt,resnorm,residual,exitflag,output,lambda,gradient] = lsqnonlin(myfun,x0,lb,ub,options)
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Harpreet Singh</member>
</simplelist>
</refsection>
</refentry>
|